6
Subsidies’ 1,180
Miscellaneous® 2,300 10,260
Total expenses $ 34,710
Budget summary: (revised 4/83)
Balance forward 1/1/83 $ 24,607
Total income 40,350
Total expenses (34,710)
Estimated balance 12/31/83 $ 30,247
Notes:

These figures, with the exception of the budget sum-
mary, are identical to those published in TUGboat Vol.
3, No. 2. The rescheduling of the Stanford meeting from
March to July has been noted.

Al exgense figures include an AMS overhead charge of
18%.

1. Numbers of members and subsecriptions are based on
1982 figures for individual memberships and library
subscriptions. The estimate for institutional mem-
berships is now obsolete; 27 institutional members
have joined as of March 31.

2. Lengthy descriptions of macro packages will be
available for purchase separately.

3. Although no formal plans have been made for a
second general meeting in 1983, one is assumed for
the Fall.

4. Editorial services include programming, reviewing
and editing; clerical services include maintaining the
data base and mailing list, and other administrative
duties.

5. Support is budgeted for attendance at one meeting
of ANSI X3J6.

6. Costs for advertising TUG membership in trade
publications.

7. Money available to Finance Committee to subsidize
travel and membership fees for individuals when
appropriate.

8. Postage/express charges, telephone tolls and sup-
plies, plus programmer and clerical services not as-
sociated with production of TUGboat.

Respectfully submitted,
Samuel B. Whidden, Treasurer

* *k ok * * % *k * ¥ % k

Software

* % *x % ¥ % %x %X X %x ¥

TEXhax SUMMARY
David Fuchs

Here's a distillation of the information that has
gone through the TeXhax mailing list over the last
few months. Most of it consists of details of install-
ing and maintaining the WEB and TEX systems, and
it is not very well organized.

One change to both systems is that all of our WEB
programs now discard trailing blanks on all input

TUGboat, Volume 4, No. 1

lines. This aids in portability, since there are a
surprising number of systems in which the number
of trailing spaces a program gets to see on each
line is some random function of the phase of the
moon. It also improves the TEX langusage, since it is
harder to have invisible differences between two files
lead to differing results. Implementers should check
their change files, since we had to alter a system-
dependent module in many of the programs to make
this change (look for input_in).

Another reason you might get the “Change file
entry did not match” error is that most of the dis-
cretionary hyphens (\-) that were included in the
WEB source code have been removed, since they are -
no longer necessary with TEX82’s hyphenation algo-
rithm. Similarly, a number of comments in the WEB
programs that looked like x now look like Ixl|,
since this is the correct way to use WEB. Finally,
the ANSI Pascal document specifically rules out the
statement WRITE(I:0), so we have changed all our
WEB programs to say WRITE(I:1) to mean “write out -
I with no leading or trailing blanks”.

For TEX, there are a few other changes to watch
for: The module (Globals in the outer block) has
been renamed (Global variables), so if any of your
change file entries say “(Globals ... }” you’ll have
to change them. The ¢¢ and go macros have been
joined by A¢ and ho, which you should add to your
change file if this is a module you changed. Finally,
the macros float and unfloat have been added to aid
TEX installers on systems on which it is impossible
to use native floating point numbers for glue ratios.

There are a few new features in WEB. First, the
new control sequence @* is similar to 0°, except
that it indicates that a hexadecimal constant fol-
lows. Note that TANGLE.WEB actually uses 0" in one
place, so if you are trying to bootstrap a new Tangle
from an old one, you’ll have to temporarily change
0"8000000 to @ °1000000000 in the new TANGLE. WEB
when you process it with the old Tangle (otherwise,
the old Tangle will ignore the 0" and interpret
8000000 as a decimal number, and you’ll end up
with a TANGLE.PAS that won’t run on itself). This
adulterated Tangle should be able to run through a
clean copy of the new Tangle and produce the same
correct Pascal program. Once you reach this state,
you can toss out the altered Tangle, and forget that
we ever suggested changing a WEB file directly.

.T'wo other new primitives: @/ forces a line-break
in the Pascal output of Tangle, and 0=. . .0> means
to put the included text into the Pascal output
“verbatim”. Also, WEAVE now keeps track of which
modules are changed, and prints all references to
these module numbers with an asterisk. WEBHDR al-

TUGboat, Volume 4, No. 1

lows you to output only the changed modules, so
you can make a short listing of only the modules
you changed, by using your change file to put
“\let\maybe=\iffalse” in limbo at the beginning
of the WEB program. See the latest TOPS-20 TEX
change file for an example of this.

The new TANGLE.WEB uses the new @ feature,
while the old versions of Tangle will ignore it as an
unknown control code. Thus if you are bootstrap-
ping to the new Tangle by using an old Tangle,
your first new TANGLE.PAS will not quite agree with
the TANGLE.PAS that you get after running the first
new TANGLE.PAS on the new TANGLE.WEB. But the
difference is only in the debug-breakpoint code, and
doesn’t alter the meaning of the Pascal program, so
this won’t cause any special trouble.

A number of people have pointed out deficiencies
in the way change files are done. For instance, it
is not too convenient to change a. single line in the
middle of a module. There is also some sentiment
for a system in which you list all of the lines you are
changing, so that Tangle/Weave would detect the
case where you get a new version of the program and
one of the modules which you have in your change
file has been altered (so your change might no longer
be correct). I personally favor this approach, but we

don’t have the manpower to consider implementing’

this right now.

A note of caution on Tangle: More than one
person has tried altering Tangle to produce all lower
case output. This is dangerous business, because
Tangle’s code for collapsing constants looks in the
output buffer for the strings “DIV” and “MOD”. Thus,
you can get incorrect results if you change Tangle
such that “div” and “mod” might end up in the
buffer.

Tangle’s output is now a bit different than it used
to be. First of all, line breaks occur at semi-colons
or right braces whenever possible. Also, comments
are inserted showing where each fragment of code
came from. For instance, part of the Pascal output
might look like:

...{123:} Foo; {456:}
Bar; {:456} More; {:123} ...
This means that module number 123 looked some-
thing like this:
Foo;
(Another module)
More;

And module 456, called {Another module), consisted
of the single line:

Bar;
Thus, it is now easy to tell where each piece of Pascal
code came from. We intend to use this information

7

with the data gathered in the statement eounting
experiment to find out how much of the total run-
time of TEX82 each individual module accounts for.
Note that the new output format implies that
each program produced by Tangle is of the form:

{xxx:} PROGRAM ZZZ; END. {:yyy}

The Pascal manual and the ANSI standard are not
specific about whether a program can end with a
comment, but no one has yet reported this to be a
problem.

Here’s a problem that a few TEX installers are
facing, having to do with evaluation of expressions.
Consider:

program expres(output);

type sizteenbit = 0..65535;

var s, : sizteenbit; 1,7 : inleger;

procedure p(k :integer);

begin write(k) end;

begin
s :=65535; 1 := s+ 10; p(z);
Sem £:=10; ¢ := s+ ¢; p(2);
8em p(s +t); p(65535 + 10);

end.

This program should print out 65545 four times. We
have heard reports of a few compilers that try to op-
timize some of the expression evaluations to be six-
teen bit calculations, and produce the wrong result
in some of these cases. The new ANSI Pascal stan-
dard document specifically says that all expressions
have to be computed to full integer precision, so the
compilers in question are in the wrong. This does
not bode well for sixteen-bit systems with a “LONG
INTEGER” type, however, since even if you use your
change file to change all integer variables to LONG
INTEGER, the compiler might not do the above cal-
culations correctly.

Us folks at Stanford are interested in address-
ing any bugs you may find in any of our WEB pro-
grams. The bug report format we most appreciate
is “Module X in program Y is wrong because Z.” If
you have found that a bug exists in TEX82, but you
can’t locate the cause, then it would help for us to
look at all the data. We need input files as well as
the log file. If you say \tracingall, TEX gives its
most verbose output. So please turn everything on,
in the vicinity of whatever bug you're diagnosing;
this makes it much easier to pinpoint the problem.

In the same vein, please send a note if you
come across any supposedly non-system-dependent
modules in TEX that you find you had to change.
They might be appropriate to be added to the index
under “system dependent”, or we may alter them so
they aren’t systemn dependent any more.

A hint for installers/maintainers: One trick I use
is to keep a copy of Prof. Knuth’s change file for
the Sail system. Whenever there is a new TgX, I
look to see where his new change file is different
from his old one, and I check my change file for
TOPS-20 to see if it needs a similar alteration. You
can do the same thing by keeping a copy of the
TOPS-20 change file, and seeing when it changes.
Actually, now that things are pretty settled down,
it is probably easier just to check TeX82.BUG to see
which modules have been changed, to check whether
your system-dependent stuff is impacted. I also save
a copy of all the WEB programs, so that when new
ones come, I can find all the changes, but this has
not been necessary very often.

Advice on making your TEX efficient: It is im-
portant that all records are declared such that they
will be packed efficiently into memory. Referring to
Module 110 in the brown Version 0 listing of TEX,
note how the type memory.word is made. The hope
is that your compiler will use 32 bits of storage for
each memory_word. Well, one of the variants of
memory_word, glue_ratio, is a real. In Pascal/VS,
for instance, a real is allotted a double-word, which
blows it right there. The proper thing to do in
that case is to change the definition of glue.ratio in
module 106 to be a short_real (in the change file, of
course). .

Similarly, VS Pascal insists that if you really
wanted a variable declared 0..255 to occupy a byte
instead of a word, you have to say

foo: packed 0..255

(note that the placement of the reserved word
packed is non-standard). So, to get TEX down
to a reasonable size, you'll have to change the
definitions of quarter_word, half word, and perhaps
even two_choices and four_choices in module 110.
This sort of change might be appropriate in other
places too, but because most of memory is taken up
by memory_words, it shouldn’t be crucial.

After your TEX port has passed the TRIP test, you
should turn off run-time debug support. For produe-
tion TEX it shouldn’t be necessary to do bounds
checking, uninitialized variable checking, and the
like. Of course, if you run into an apparent bug,
yow’ll probably want to turn it back on to help trace
the problem as far as possible before reporting it to
Stanford (hint, hint).

Advice on porting TEX: First, make sure to con-
gider the modules that are listed in the index under
‘Dirty Pascal’. A few of these modules are debug-
ging code that look through the big “mem” array,
and are considered dirty because they read from
variants that weren’t written into. That is, TEX

TUGboat, Volume 4, No. 1

may have done MEM[0] . SC:=0.0, but a dirty module
might WRITE(MEM{0].INT). This has worked OK
on all machines we’ve run into so far, but one can
imagine an architecture in which it would cause a
problem. Of course, normal users will never run into
this code—it’s only for TEX installers/debuggers.

The dirty module (Display the value of
glue_set(p)) requires a little special attention. On
our system, if glue_set(p) was erroneously set to a
pattern of bits that did not represent a legal floating
point value, due to a bug in TEX, then our run-time
system would blow up while trying to print out its
value. In order to make the code robust in the face
of such bugs, so that the person trying to find the
origin of the bug would be able to continue the job
and use TEX82’s internal debugging support to look
around for further clues, the module in question was
changed so that it first looked at glue_set(p) as an in-

‘teger and figured out whether it was a legal floating

point number. I not, it simply prints “?.?” in-
stead of write(glue_set(p)). Of course, this is very
system-dependent. On other computers, it may be
appropriate to remove this test, but it will certainly
be true that you’ll at least have to change it.

Other than the debugging modules mentioned
above, TEX should never read from a different
variant than it writes into in any record. Also,
TEX should never refer to an uninitialized vari-
able, except for the variable ready_aiready. The
details about ready_already are pretty well covered
in the section of the TEX program titled “The Main
Program.”

Different systems have different conventions
about 1/0 to the user’s terminal. On some systems,
INPUT is hardwired to the keyboard, QUTPUT is the
screen, and that’s it. On others, there might be
another built-in file that is hardwired to the screen,
and INPUT and OUTPUT might always refer to disk
files. Another possibility is that the program ean
dynamically tell the system which files should be
associated with the terminal, and which with the
disk. The TEXware programs and TEX itself try to
be flexible enough to deal with all these possibilities.
Consider TFtoPL, which mentions three files in its
program statement in module 2: tfm._file, pl file and
output. Module 2 also mentions that all of the writ-
ing to the output file goes through the print and
print_in macros; so if you have a system, say, where
output to the terminal must go to file iy, then you
can change the definitions to:

0d print(#)==write(tty, #)
d print_in(#)==write_in(tty, #)

TUGboat, Volume 4, No. 1

You’d probably aiso want to change the program
statement not to include the file output, and you
might have to do a rewrite on tty.

The same comments go for PLtoTF. DVltype is
a bit different, though. It uses the file output for its
main output, so you probably don’t want this file
associated with your terminal. Hence, if output is
hardwired to the terminal on your system, you will
want to change the macros in module 3 to:

0d print(#)==write(type_file, #)

0d print_in(#)==write_in(type_file, #)
You’ll also have to include a declaration of type_file,
and do a rewrite in some other modules.

DVItype holds a dialog with the user to get the
values of certain parameters. The files term_in,
term_out: terxtl_file are declared in the section
Optional Modes of Qutput to be used for this pur-
pose. If, say, your system reserves the pre-declared
files snput and output for this function, then you can
change the declarations to macros:

0d term_in==input
0d term_out==outpul

Pretty sneaky! You can do the same thing if the file
tty is hardwired to your terminal.

There are more headaches due to differing ap-
proaches to I/O on different systems. On many sys-
tems, reading a single character from a file is a rela-
tively expensive operation. That is, the time spent
doing

program slow;
var ¢: char;

while not ¢of do begin
while not eoin do read(c);
readin;
end;
end. :
is 8 major portion of how long TEX itself takes to
run. There’s not too much we can do about this if
your system does read(c) via a slow procedure call.
However, many systems provide some sort of exten-
sion so that you can read a whole line of input at
once, more efficiently. For instance, on our system,
you can say:
var line: packed array [1..80] of char;
howmany: integer;
read(line:howmany);
and the variable howmany will get the number of
characters actually read in. In any case, all of our
programs always read a line at a time into a buffer
array (usually in a procedure called input.in), so if
a facility similar to the one just mentioned exists in
your system, you should be able to use it with TEX

9

by changing just a few modules. (Some people may
be able to do this sort of thing by calling a procedure
in another language.)

Things are even worse for I/O of binary byte data
(TFM and DVI files) and word data (FMT files). Not
only might it be inefficient, but I/O of binary data
is even less standard than character. Even if your
compiler accepts things like:

var w: file of integer;

b: file of 0..255;

write(w, 456); write(b, 123);
you are well advised to check out that these things
will work as expected. It is best to experiment with
a small program to read and write such files before
jumping into the TEX system, if there is any doubt
as to how these files will work on your system. Once

.again, for efficiency’s sake, you may have to block

things up yourself using an array as a buffer.

Two installation points: There have been some
questions on how to run the TRIP test file. To get
results that are identical to ours, you’ll have to com-
pile a special version of TEX that has some compile-
time constants set to values that probably don’t
match the values you’d want to use in a production
version of TEX. In particular, you should turn on
the stat and debug switches, and make the following
definitions in your change file:

0! mem_maz = 3000; {greatest index in TEX’s internal
mem array, must be strictly less than maz_halfword;
this is the value appropriate to the TRIP test file}

0! error_line = 64; {width of context lines
on terminal error messages}

0! half error_line = 32; {width of first lines
of contexts in terminal error messages,
should be between 30 and error_line — 15}

0! maz.print_line = 72; {width of longest
text lines output, should be at least 60}

0! dvi_buf_size = 800; {size of the output buffer,
must be a multiple of 8}

0d hs.mem._base = 2200 {smallest index in the
single-word area of mem, must be
substantislly larger than mem_base
and smaller than mem_maz}

Finally, TEX's try_break procedure is still to big
for some people’s compilers when the stat switch is
turned on. We suggest using your change file to
put the stat code into a small procedure statically
embedded within #ry_breek, so that you won't have
to worry about local/global variables.

