

TUGboat, Volume 4, No. 1

lows you to output only the changed modules, so
you can make a short l i d g of only the modules
you changed, by using you. change file to put
"\let\msybe=\if f alse" in limbo at the beginning
of the WE3 program. See the latest TOPS-20
change file for an example of this.

The new TANGLE .WEB uses the new 0 feature,
while the old versions of Tangle will ignore it as an
unknown control code. Thus if you are bootstrap
ping to the new Tangle by using an old Tangle,
your first new TANGLE. PAS will not quite agree with
the TANGLE. PAS that you get after running the first
new TANGLE .PAS on the new TANGLE.WJZB. But the
difference is only in the debug-breakpoint code, and
doesn't alter the meaning of the Pascal program, so
this won't cause any special trouble.

A number of people have pointed out deficiencies
in the way change files are done. For instance, it
is not too convenient to change a single line in the
middle of a module. There is also some sentiment
for a system in which you list all of the lines you are
changing, so that Tangle/Weave would detect the
case where you get a new version of the program and
one of the modules which you have in your change
fde has been altered (so your change might no longer
be correct). I personally favor this approach, but we
don't have the manpower to consider implementing
this right now.

A note of caution on Tangle: More than one
person has tried altering Tangle to produce all lower
case output. This is dangerous business, because
Tangle's code for collapsing constants looks in the
output buffer for the strings "DW' and "MOD". Thus,
you can get incorrect results if you change Tangle
such that "did' and "mod" might end up in the
butfer.

Tangle's output is now a bit different than it used
to be. Firat of all, line breaks occur at semi-colons
or right braces whenever possible. Also, comments
are inserted s h d g where each fragment of code
came from. For instance, part of the Pascal output
might look like:

. ..Ci23:3 Foo; (456:)

Bar; <:4563 More; (:123) .. .
This means that module number 123 looked mme
thing like thii:

Foo; .
(Another module)
More;

And module 456, called (Another module), consisted
of the single line:

Bar;
Thus, it is now easy to tell where each piece of Pascal
code came from. We intend to use this information

with the data gathered in the statement counting
experiment to find out how much of the total run-
time of m 2 each individual module accounts for.

Note that the new output format implies that
each program produced by Tangle is of the form:

(XR:) PROGRAM ZZZ; END. (:ygg)

The Pascal manual and the ANSI standard are not
specific about whether a program can end with a
comment, but no one haa yet reported this to be a
problem.

Here's a problem that a few l$jX installers are
facing, having to do with evaluation of expressions.
Consider:

program eqres(output);
type sizteenbit = 0. .65535;
var s, t : aixteenbit; i, j : integer;
procedure p(k :integer);
begin wite(k) end;

begin
s := 65535; i := s + 10; p(i);
8em t := 10; i := s + t; p(i);
8em p(s + t); p(65535 + 10);

end.

This program should print out 65545 four times. We
have heard reports of a few compilers that try to op
timise some of the expression evaluations to be six-
teen bit calculations, and produce the wrong result
in some of these cases. The new ANSI Pascal stan-
dard document specifically aays that d expressions
have to be computed to full integer precision, so the
compilers in question are in the wrong. This does
not bode well for aixteen-bit systems with a "LONG
INTEGER" type, however, since even if you use your
change 6le to change all integer variables to LONG
INTEGER, the compiler might not do the above cad
culations correctly.

Us folks at Stanford are interested in address-
ing any bugs you may find in any of our WEB pro-
grams. The bug report format we most appreciate
is "Module X in program Y is wrong because 2." If
you have found that a bug exists in 'QjX82, but you
can't locate the cause, then it would help for us to
look at all the data. We need input 6les as well as
the log fde. If you say \tracingall, 'I@ give8 its
most verbose output. So please turn everything on,
in the vicinity of whatever bug you're diagnosing;
this makes it much easier to pinpoint the problem.

In the same vein, please aend a note if you
come across any supposedly non-system-dependent
modules in l) jX that you find you had to change.
They might be appropriate to be added to the index
under "system dependent", or we may alter them so
they aren't ayetern dependent any more.

A hint for installers/maintainers: One trick I use
is to keep a copy of Prof. Knuth's change file for
the Sail system. Whenever there is a new I]FX I
look to see where his new change flle is different
from his old one, and I check my 'change a e for
TOPS-20 to see if it needs a similar alteration. You
can do the same thing by keeping a copy of the
TOPS-20 change flle, and seeing when it changes.
Actually, now that things are pretty settled down,
it is probably easier just to check TeX82. BUG to see

which modules have been changed, to check whether
you. system-dependent stuff is impacted. I also save
a copy of all the WEB programs, so that when new
ones come, I can find all the changes, but this has
not been necessary very often.

Advice on making your l) j X efficient: It is im-
portant that all records are declared such that they
will be packed efficiently into memory. Referring to
Module 110 in the brown Version 0 listing of T)ijX,
note how the type memory-word is made. The hope
is that your compiler will use 32 bits of storage for
each rnernoy-word. Well, one of the variants of
memory-word, glue-ratio, is a teal. In Pascal/VS,
for instance, a red is allotted a doubleword, which
blows it right there. The proper thing to do in
that case is to change the definition of glue-ratio in
module 106 to be a short-real (in the change file, of
course).

Similarly, VS Pascal insists that if you really
wanted a variable declared 0. .255 to occupy a byte
instead of a word, you have to say

foo: packed 0. .255
(note that the placement of the reserved word
packed is non-standard). So, to get TE;X down
to a reaeonable size, you'll have to change the
definitions of quarter-word, hacword, &d perhaps
even two-choices and four-choices in module 110.
This sort of change might be appropriate in other
places too, but because most of memory is taken up
by memory-words, it shouldn't be crucial.

After your 'QjX port has passed the TRIP test, you
should turn off run-time debug support. For produc-
tion '&X it shouldn't be necessary to do bounds
checking, uninitialized variable checking, and the
like. Of course, if you run into an apparent bug,
you'll probably want to turn it back on to help trace
the problem as far as possible before reporting it to
Stanford (hint, hint).

Advice on porting First, make sure to con-
sider the modules that are listed in the index under
'Dirty Pascal'. A few of these modules are debug-
ging code that look through the big %em" array,
and are considered dirty because they read from
variants that weren't written into. That is, QjX

TUGboat, Volume 4, No. 1

may'have done MEAll01'. SC : =O . 0, but a dirty module
might WRITE (MEM [Ol , INTI. Tbia has worked OK
on all machines we've run into so far, but one can
imagine an architecture in which it would cause a
problem. Of mum, normal users will never run into
this code -"it's only for 'QjX installersjdebuggera.

The dirty module (Display the value of
glue-set(p)) requires a little special attention. On
our system, if glue-set(p) was erroneously set to a
pattern of bits that did not represent a legal floating
point value, due to a bug in 'QjX, then our run-time
system would blow up while trying to print out ite
value. In order to make the code robust in the face
of such bugs, so that the person trying to find the

origin of the bug would be able to continue the job
and use 'QjX82's internal debugging support to look
around for further clues, the module in question was
changed so that it first looked at glue-set(p) as an in-
teger and figured out whether it was a legal floating
point number. If not, it simply prints U?. ?" in-
stead of write(g1ue-set@)). Of course, this is very
system-dependent. On other computers, it may be
appropriate to remove this test, but it will certainly
be true that you'll at least have to change it.

Other than the debugging modules mentioned
above, 'QjX should never read from a differeot
variant than it writes into in any record. Also,
TEX should never refer to an uninitidised vari-
able, except for the variable ready-already. The
details about ready-already are pretty well covered
in the section of the '@X program titled "The Main
Pmgram."

Different systems have different conventions
about 110 to the user's terminal. On some eystems,
INPUT is hardwired to the keyboard, OUTPUT is the
screen, and that's it. On others, there might be
another built-in fle that is hardwired to the meen,
and INPUT and OUTPUT might always refer to disk
flea. Another possibility is that the program can
dynamically tell the system which flea should be
associated with the terminal, and which with the
disk. The 'QjXware programs and 'QjX iteelf try to
be flexible enough to deal with all these poeeib'itiw.
Consider TFtoPL, which mentions three files in its
program statement in module 2: Qk jZe , pl$k and
output. Module 2 also mentions that all of the wri+
ing to the output file goes through the print and
print-ln macros; so if you have a system, say, where
output to the terminal must go to file ttg, then you
can change the dehitions to:

TUGboat, Volume 4, No. 1

You'd probably also want to change the program
statement not to include the tile output, and you
might have to do a rewrite on tty.

The same comments go for PLtoTF. DVItype is
a bit different, though. It uses the file output for its
main output, so you probably don't want this file
sseociated with your terminal. Hence, if output is
hardwired to the terminal on your system, you will
want to change the macros in module 3 to.

Od print(#)=wPite(type_file, #)
Od print_ln(#)=dte-ln(tYpe-file, #)

You'll also have to include a declaration of type-fire,
and do a reunite in some other modules.

DVItype holds a dialog with the user to get the
values of certain parameters. The files ternin,
termout: teztJile are declared in the section
Optional Modes of Output to be used for this pur-
pose. If, say, your system reserves the predeclared
files input and output for this function, then you can
change the declarations to macros:

Od temin=input
Od temout=output

Pretty sneaky! You can do the same thing if the file
ttg is hardwired to your terminal.

There are more headaches due to differing a p
proaches to 110 on different systems. On many sye-
tern, reading a single character from a file is a rela-
tively expensive operation. That is, the time spent
doing

Program slow;
var c: char;

begin
while not eoj do begin

while not eoln do read(c);
readln;
end;

end.

ie a major portion of how long QijX itaelf takes to
run. There's not too much we can do about this if
your system does recrd(c) via a elow procedure call.
However, many systems provide Borne eort of exten-
sion so that you can read a whole line of input at
once, more efficiently. For instance, on our vetem,
you can say:

W ~ F line: packed array [I. .80] of char;
howmany: integer;

red(1ine:howmang);

and the variable howmany will get the number of
characters actually read in. In any case, all of our
programs always read a line at a time into a buffer
array (usually in a procedure called input&), so if
a f d t y similar to the one just mentioned exiata in
your syetem, you should be able to use it with 'QjX

by changing juat a few modules. (Some people may
be able to do this sort of thing by calling a procedure
in another language.)

Things are even worse for 110 of binary byte data
(TF'M and DVI files) and word data (FYT files). Not
only might it be inefficient, but 110 of binary data
is even less standard than character. Even if your
compiler accepts things like:

var w: We of integer;
b: ffle of 0. .255;

mete(w, 456); wite(b, 123);

you are well advised to check out that these things
will work aa expected. It is best to experiment with
a amall program to read and write such files before
jumping into the QX system, if there is any doubt
aa to how these tiles wil l work on your system. Once
again, for efficiency's sake, you may have to block
thiiga up yourself using an array as a buffer.

Two installation points: There have been some
questions on how to run the TRIP test tile. To get
results that are identical to ours, you'll have to com-
pile a special version of = that has some compile-
time constants set to values that probably don't
match the values you'd want to use in a production
version of "&X. In particular, you should turn on
the stat and debug switches, and make the following
defhitions in your change file:

O! memmax = 3000; {great& index in =a internal
mem array, muat be etrictly leas than mcrzha&d;
thie is the value appropriate to the TRIP test He)

0 ! mor_linc = 64; {width of context line%
on terminsl enor meesages)

0 ! hulf-mw-line = 32; {width of f h t line6
of eontexts in terminal error meesages,
ahould be between 30 and ewmlinc - 15)

0 ! mcrzptint-knc = 72; {width of longest
text lines output, should be at least 60)

0 ! dvL buf_siac = 800; {eiee of the output buffer,
must be a multiple of 8)

Od l l m e m b o s e = 2200 {smalleat index in the
single-word area of mem, must be
substantially larger than mmrbase
and smaller than memmaz)

Finally, 'QjX's try-break procedure is still to bii
for some people's compilers when the stat switch ia
turned on. We suggest using your change file to
put the &at code into a small procedure statically
embedded within try-break, ao that you won't have
to worry about local/global variables.

