
TUGboat, Volume 11 (1990), No. 4

\loop %
\expandafter %
\ParseLine\Remainder\endParse %
\expandafter\getMeaning %

\meaning\FirstLine\endget %
\irnmediate\write#l{\Meaning)%
\ifx\Remainder\empty\else%

\repeat)%
\endgroup % end \returnactive %(*I

\fi %
\fi %

Notice that \ re tu rnac t i ve must be used not only
when the lines are actually broken, but also for the
definitions of \Parse l ine and \Write since they
involve the active --M. The definition to be used
here for \loop is that in Ron Whitney's paper (note
the \e lse\ repeat) . The switch \ifexpmacros is
controlled by the following code in prepare. t e x for
yet another option, \ExpandMacros:

The swarm of %-signs is here to prevent the over-
active ^-Ms from creating mischief. In a more
advanced course, you may learn a simpler way to
tame them (cf. the "sanitizing" paper in this issue).

Special challenge. Consider the endnotes in Edith
Hamilton's The Greek way (W. W. Norton, 1942):
No marks appear in the text itself, but each note
indicates the page number and the line number on
that page to which the note refers. Had T)jX existed
in 1942, how might this have been achieved?

In the next tutorial, we consider some questions
related to the construction of indexes. Among other
ideas, there will be more about parsing by context
and some examples of other ways to use loops.

Note. A disk (5.25in DSDD) containing source
text for the figures in this series of four tutorials,
and the code files used to produce them, is available
for MS DOS users who are members of the rn Users
Group. Send $6 (which includes a royalty for the

Users Group) to the address below. Outside
North America, add $2 for air postage.

As usual, Ron Whitney has been generous with
ideas and inspiration. He has taught me a lot
about T)Q-everything I know about it, except
for all the things I learned from Barbara Beeton,
over a period of several years, and things that I
understood when I read about them for the first
time in The m b o o k .

o Lincoln Durst
46 Walnut Road
Barrington, RI 02806

Output Routines: Examples and Techniques.
Part 111: Insertions

David Salomon

Note: Before reading this article. the reader should
glance at parts I or I1 for disclaimers and remarks
on notation.

Insertions are considered one of the most com-
plex topics in W. Many users master topics such
as tokens, file 110, macros. and even OTRS before
they dare tackle insertions. The reason is that
insertions are complex, and The W b o o k , while
covering all the relevant material, is somewhat cryp-
tic regarding insertions, and lacks simple examples.
The main discussion of insertions takes place on
[115-1251. where W ' s registers are also discussed.
Examples of insertions are shown, mostly without
explanations, on [363-364, 423-4241. There is.
therefore, a need for an article like the present one.
It tries to explain insertions in detail, and shows
specific. simple examples. Concepts are developed
gradually, and the ultimate truth revealed in steps.

Introduction

Definition: An inser t ion is a piece of a document
that is generated at a certain point but should
appear in the document at another point.

Common examples of insertions are footnotes.
endnotes (Note l) , and floating insertions. These are
important features, which explains why a general
insertion mechanism has been incorporated into
TEX. The following short quote (from [124]) says
it all: "Thzs algorithm is admit tedly complicated,
but n o szmpler mechan ism seems t o do nearly
as much." Using insertions, it is possible to
accumulate material (textlpictures) in a box and
typeset it anywhere in the document. The material
can be inserted on the current page. it may be held
over by and inserted on the following page. it
may be split between the current page and the next
one, or it may wait for the end of the document.
The p la i n format also provides very convenient
macros, based on the general insertion mechanism,
to handle footnotes and floating insertions.

A good example of insertions is the placement
of index items in the right margin [423-4241, an op-
eration that is part of the m a n m a c format [App. El.
See (Note 2) for an outline of the idea. A simple
version is developed elsewhere in this article.

It is important to point out that, even though
the insertion mechanism of TEX is general and
complex, it cannot deal with every conceivable situ-
ation. Consider the case of facing figures (Note 3).

TUGboat, Volume 11 (1990). No. 4

This is a problem that W ' s insertion mechanism
cannot handle. It is easy to implement in other
ways, though (Note 4).

A simple example

Before delving into the details of insertions, it is
useful to develop a simple example from scratch,
without using any of the built-in features for in-
sertions. We will develop a simple mechanism for
handling floating insertions. Suppose that diagrams
should be pasted into our document (after it's been
typeset) at certain points. We need to reserve room
for each diagram, which is done by placing an empty
\vbox at each insertion point.

Exercise: Why not simply say \vsk ip . . . or
\kern. . . to reserve vertical space on the page?
(Note 5) .

We therefore define a macro \Pic by

and call it by, e.g., \P ic 3 . 5 i n high. The problem.
of course, is that there may not be 3.5 inches of
space left on the current page. In such a case, the
insertion should be 'floated' to the top of the next
page. We therefore have to generalize our macro
such that it measures the space left on the current
page before it creates the \vbox. To understand
how this is done, the reader should first review the
section on \ page to ta l and \pagegoal in part I,
where macro \pagespace was developed. This
macro, whose definition is copied below, does just
that.

We now generalize macro \Pic. It starts by
setting \box0 to the desired, empty \vbox. It then
compares the height of the picture to the available
space on the page. If there is enough room, \box0
is simply typeset, which reserves room on the page
for the diagram: otherwise, \box0 is appended to
another box, called \ f i g .

After several calls of \Pic. \box\ f ig is either
void, or contains a bunch of vboxes with nothing
in between. When the OTR is next invoked, it first
ships out the current page, then checks \box\f i g .
If that box is nonvoid, the OTR empties it by simply
saying \unvbox\f i g , which places its contents on
top of the MVL: to appear at the top of the next
page.

This way. enough space is reserved on top of
the next page for as many diagrams as necessary.
It is important to say \unvbox\fig. rather than
\box\f i g , since this places on the MVL. not
the single \box\f i g - which is indivisible - but its
contents, as separate boxes. The contents may now
be spread over more than one page, if they involve
many elements.

This simple example should be studied care-
fully, since it provides a good starting point for a
full understanding of insertions.

Insertions (introductory)

On the first reading of this section. the endnotes
should be ignored.

The insertion mechanism used by 7&X (see
[122-1251) is based on box variables. A box variable
is allocated. and the \ i n s e r t command is then
used to accumulate, in that box (Note 6). vertical
material to be eventually typeset (on the same page
or someplace else in the document). The OTR

can typeset the box anywhere on the page, using
standard features, as shown below (Note 7).

Example: The command \newinser t \ f ig al-
locates the box variable \box\f ig . Each command
of the form \ insert\f igC(vert icaI materzal)) ac-
cumulates material in the box (Note 8), material
which assumes is to be eventually typeset,
by the OTR, somewhere in the document. If the
material is to be typeset on the current page,
is instructed (see discussion of \count\f i g below)
to decrement g (Note 9) by the vertical size of the
material, in order to reserve room on the page.

Just before the OTR is invoked, the insertion
box becomes available (Note 10). We quote from
[254] ". . .just before the output routzne begzns, inser-
tzons are put znto thew own boxes." The OTR can

590 TUGboat, Volume 11 (1990), No. 4

typeset the material in \box\f i g by constructions
such as:

I . \shipout\vbox{\box255\unvbox\fig),to
typeset the insertion at the bottom of the
page.

2. \shipout\vbox{\unvbox\f ig\box255), to
typeset it at the top.

3. \shipout\vbox{\vsplit255 t o 4 in
\box\f i g \box255), to typeset it 4 inches
from the top of the page.

4. \shipout\vbox{\rlap{\kern\hsize \vbox
t o Opt {\box\f i g \vss))\box255), to place
the insertion at the top right margin.

Insertions (intermediate)

The actual steps taken by rn are more compli-
cated. In response to the \ i nse r t \ f i g command,
the material is accumulated, not in the insertion
box but rather in a temporary buffer. Just before
the OTR is invoked, as much of the material in the
buffer as can fit on the page, is appended to the
insertion box. Note that the user may. from time to
time, append things to the insertion box explicitly,
by means of

\setbox\f ig=\vbox(\unvbox\f i g (material). . .)
The accumulated material is eventually appended to
those things. When the OTR typesets the box on the
page, all the box contents go on the page; however,
room on the page is reserved only for material
handled through the \ inser t \ f i g command.

The \newinsert command mentioned above
does more than just allocate a box. It allocates
a class of insertions. The class includes \count,
\dimen, and glue (\skip) variables, all of the
same number, and all set to zero by default. So,
for example, the \newinsert \ f ig above reserves
variables \box\f i g , \count\f i g , \dimen\f ig , and
\skip\ f ig . They are considered class insertion
\ f i g . If \ f i g happens to be 100, then the
\newinsert\f i g above allocates variables \box100.
\count 100, \dimenloo, and \skiploo.

Since \box255 is reserved for special OTR use,
only insertion classes 0 . . .254 can be allocated.
Macro \newinsert computes a number (counting
down from 254) and allocates a box, a count, a
dimen, and a skip register with that number. The
reason for allocating from 254 instead of 255 is
that \box255 is reserved for special OTR use. The
reason for allocating downwards is that registers
\count 0, \count 1. . . are used for the page number,
and that many people tend to use registers \boxO,
\boxl . . .for temporary storage.

The \dimen\fig variable limits the size of
the insertion material per page. In response to
\dimen\fig=8in 7$J will place at most 8 inches
worth of insertion material from the temporary
buffer in \box\f i g per page. If the buffer contains
more than 8in of material, the excess will be
heldover for the next page. Placing 8 inches worth
of material from the buffer in \box\f ig may also
mean that an insertion will have to be split by 7$J.
The splitting is done by \ vsp l i t (Note l l), an
operation which is also available for general use. If
\dimen\f i g is not set by the user, its value is zero,
which means no room at all on the page for insertion
material. The material simply accumulates in the
buffer without being used. or until the value of
\dimen\f i g is changed.

The \count\f i g variable specifies by how much
g should be decremented. Setting \count\f ig=25O
causes g to be decremented by 25% of the height
(plus depth) of each block of insertion material
placed in \box\fig. Example 4 above should set
\count\f ig=O, since the insertion is done on the
right margin and no room should be reserved for it
on the page.

The \skip\ f i g variable specifies how much
vertical skip the user wants to place, by means of
the OTR, on the page above or below the insertion.
7$J decrements g once by the amount of \skip\ f i g
on those pages which have some insertion material
of class \ f i g in order to reserve room on the page
for the skip. The skip itself, however, is not done
automatically, and the OTR should not forget to
add vertical glue totalling \skip\ f i g to the page.

Tracing insertions (preliminary)

A good way to understand insertions (and many
other aspects of W) is to trace the values of the
various quantities involved. Such tracing is easily
done by \message commands. which can display
many internal quantities at run time. A test of the
type shown below is simple and can reveal a lot
about the inner workings of insertions.

\messageCl:t=\the\pagetotal; g=\the\pagegoal)
Text f o r the f i r s t paragraph

TUGboat, Volume 11 (1990), No. 4 591

\message{2:t=\the\pagetotal; g=\the\pagegoal)
\insert\f ig{(Material))
Text for the second paragraph

This simple experiment should be repeated with
\tracingpages=l to get even more information
on how TEX (actually, the page builder) handles
insertions (see detailed examples in a later section
on tracing).

Example: Endnotes

Endnotes are used in this article as a simple example
of insertions. They are implemented in three steps.

1. A new class of insertions is declared and
initialized by:

Since the notes will be typeset on the last
page, no room should be reserved for them on
the current page, which is the reason for setting
\count\notes=O. Setting\dimen\notes=\maxdimen
guarantees that any amount of endnotes, even more
than a page worth, could be placed in \box\notes.

2. Macro \endnote can be expanded anywhere
in the document. It accepts one parameter, the text
of the endnote, and executes \insert\notes{#l).
It also computes the note number, and typesets the
word 'Note' and the note number in parentheses.

\newcount\notenumber
\notenumber=O
\long\def\endnote#l{\advance\notenumber by 1

(Note \the\notenumber)%
\insert\notes{\noindent[\the\notenumber]

#I. \medskip))

3. The endnotes should be typeset at the end
of the document, but how? Generally, a box, such
as \boxO, is typeset by saying \box0 or \unvboxO.
However, we cannot do that with an insertion box,
since the contents is only placed in it before the
OTR is invoked. The job, therefore, has to be done
in the OTR, and one way of doing it is:

This method uses the special penalty value of
-20000, and is explained later. in the section on
\superej ect.

Each \insert\notes command places the ma-
terial in \box\notes as a paragraph or as several
paragraphs. Commands that apply to paragraphs
in general, may be used for this material. The
\noindent above is one example. Without the
\noindent, the insert becomes

and the material will be placed in \box\notes with
the first paragraph indented. Another possibility is

which will place the material in \box\notes, broken
into narrow lines.

It is also possible, of course. to say

and this will place each endnote in \box\notes as a
\vbox. Such endnotes cannot be split across pages,
and the last page where they appear, may come out
too long or too short.

(See Lincoln Durst's article beginning on p. 577
of this issue of TUGboat for a different treatment
of endnotes.)

Example: Footnotes

The footnotes example shown here is similar to the
one implemented in the plain format [363], but is
much simpler.

1. An insertion class \f ootins is declared and
initialized by:

\newinsert\footins
\skip\footins=12pt plus 4pt minus4pt
\count\footins=1000
\dimen\footins=8in

The last line limits the amount of footnote material
per page to 8 inches. If there are more footnotes
than that, the excess is held over to the next
page. This is automatically done by w ' s insertion
mechanism. Note that preparing 8 inches worth of
footnotes may necessitate splitting one footnote.

2. A \footnote macro is defined, with two
parameters: the footnote reference symbol, and
the footnote text. It typesets its first parameter
and appends both parameters (without a space in
between) to the insertion box.

592 TUGboat. Volume 11 (1990), No. 4

The footnote text may be longer than one line.
but, when placed in \box\f oot ins, it will be broken
into lines of size \hsize, and will not be indented.

If the footnotes should be typeset in a small
size, we can say, e.g.,

which typesets the footnote text in seven-point
roman. The footnote symbol will be set in the
current font (the font that is current at the time of
insertion).

Readers experimenting with these macros will
notice that the two examples of \ footnote above
result in bad vertical spacing, both inside and
between the footnotes. The reasons are (1) se-
lecting a font does not automatically change the
interline spacing. The value of \basel inesk ip in
\box\f oot ins is still 12pt, appropriate for cmrl0,
but not for cmr7; (2) there is no separation. in
\box\f oot ins. between the individual footnotes.

To correct the spacing. (1) the interline glue
(\basel inesk ip) should be set, in \box\footins.
to a value appropriate for a seven-point font: (2) the
individual footnotes should be separated by placing
a strut with the desired height and depth at the be-
ginning and end of each of them (see also [Ex. 21.31).
Much better footnote spacing is obtained by:

Further improvement is obtained when TEX
is discouraged from splitting a footnote between
pages, whenever possible. This is done by (1) plac-
ing a penalty between the lines of each footnote;
(2) placing a negative penalty between footnotes
in \box\foot ins; (3) adding flexibility to the 4pt
separating the footnotes. Some flexibility may also
be added to the interline glue, but this results in
nonuniform appearance of the pages.

The last point to consider is the two parameters
\ l e f t sk i p , \ r ightsk ip . They are inserted on the
left and right of every line of text [loo]. Normally
they are zero, but the user may set them to any
value at any time. If we don't want them to affect
the horizontal size of our footnotes. they should be
set to zero locally, when the footnote text is inserted
into \ foo t ins . This is done by:

\def\footnote#l#2{#l\insert\foot~ns(
\leftskip=Opt\rightskip=Opt
\interlinepenalty=lOOO
\basel ineskip=8pt pluslpt \noindent
\sevenrm#l#2 \penalty-1000
\vskip4pt plus2pt minus2pt))

3. The OTR should ship out a page consisting
of (1) the body of the text. in \box255; (2) a
\vskip\skip\ foot ins. with a rule znszde zt; (3) the
footnotes for the page. in \unvbox\f oot ins. Here
is how it's done:

\output={\shipout\vbox t o \vsize(\unvbox255
\ i f vo id \ foo t ins \e lse

\vskip\skip\ foot ins
\kern-3pt\hrule width2in\kern2.6pt
\unvbox\footins

\f i)
}

In practice. the OTR should do other things,
such as typesetting and incrementing the page
number, but those are ignored here. The reason for
unboxing \box255 is so that its flexible glues could
blend with the ones in the insertion box (see the
last six lines on [I251 for a similar comment).

It should be mentioned here that these foot-
notes may appear on a page different from the one on
which they are referenced (see [Ex. 15.131 for other
cases where this may happen). This happens when
there are many footnotes but we limit the amount
of space on the page where footnotes can be type-
set by assigning a small value to \dimen\f oot ins.
A value such as 0.4 in is generally enough for 4
footnote lines and. if there is more footnote text
for the page, it would be typeset on the following
page. This sometimes requires splitting a footnote
into two parts, which is why footnotes should be
inserted into \ foo t ins as individual lines. not as a
\vbox (which is indivisible). Thus we should avoid
something like:

\def\footnote#l#2{#1\insert\footins~
\vbox{#l#2 \vsklp4pt)))

Example: Right margin insertions

Another useful example of insertions has to do with
index items. Preparing an index for a textbook
can be no small task, and T)$ can help a lot
in this (Note 12). Typically, macros should be
defined to identify parts of the text as index items,
and write them on a file for future sorting and
processing. However. it is very useful, while writing
and modifying the document. to typeset all the
index items of a page on the right margin of the
page. When the document is ready, the final run
omits the notes on the margin. Such an example is

TUGboat, Volume 11 (1990), No. 4 593

shown on 1415. 423-4241 and is described here in a
simplified form.

The main steps are:
1. A boolean variable \proofmode is declared

and set to true. A new class of insertions. called
\margin, is declared and initialized.

1. \newif \if proof mode
2. \proof modetrue
3. \newinsert\margin
4. \dimen\margin=\maxdimen
5. \count\margin=O
6. \skip\margin=Opt

Line 4 allows any amount of marginal notes per
page (Note 13). Line 5 guarantees that no space
will be reserved on the page for the notes, and
line 6 says not to skip vertically before the notes
are typeset.

2. The index macro is defined. It has one
parameter, the index item. The macro writes it
on a file, with the page number, and inserts it in
\insert\margin. The latter part is done by:

\ifproofmode\insert\margin(
\hbox<\sevenrm #l}}\fi

Each index item is placed in an \hbox, and
so becomes one line. If it is too long to fit on
the margin, part of it will fall off the page. If it
is important to see the entire text of the note. it
can be placed in a narrow \vbox. where it will be
broken into lines. Assuming a 1 inch wide margin.
we can write:

\ifproofmode
\insert\margin(\vbox~\hsize=lin

\baselineskip=8pt\tolerance=2000
\sevenrm\noindent#l)\smallskip~

\f i

Note the vertical spacing of the notes, which is
similar to the case of footnotes. (Note 14)

3. The OTR should typeset \box\margin on
the right margin of the page during \shipout. Here
are the basic steps:

\output=~\shipout\vbox to \vsize(
\ifvoid\margin \else

\rlap<\kern\hsize\kern4pt
\vbox to0ptC\box\margin\vss~~

\f i
\unvbox255)}

The \rlap leaps over to the right margin with
the \kern\hsize, then moves another 4pt to the
right, to separate the marginal notes from the body
of the text. The OTR should, of course. do other
things, such as advancing the page number, and
appending a header, a footer, and footnotes.

The main differences between the marginal
notes and the footnotes discussed earlier are (1) no

marginal notes should be held over to the next page
(even if they don't all fit on the current page);
(2) no room should be reserved on the page for the
marginal notes; (3) overfull boxes are okay since the
marginal notes will be omitted anyway on the final
run.

Example: Floating insertions

We describe a mechanism for floating insertions,
similar to the \midinsert of the plain format.
\midinsert is explained on [I161 and its definition
shown on [363]. Our example is simpler and does
not do as much as \midinsert. but it works, and it
serves to illustrate the principles involved.

An insertion class \midins is declared, and a
macro pair \midinsert, \endinsert is defined and
used to delimit the material to be inserted. It is
used as follows:

\midinsert
(material to be inserted)
\endinsert

The material to be inserted may contain commands
and specifications that should be kept local to
the insertion (Xote 15). This is achieved by the
\bgroup, \egroup pair (see below), which acts as
a quarantine. The main task of this pair. however.
is to collect all the material appearing between
\midinsert and \endinsert, and either typeset
it. or place it in \midins. The \begingroup.
\endgroup pair serves to localize the settings of
\box0 and \dimen0 which the user never sees.

Most of the work is done by \endinsert.
It closes the insertion material into \box(), and
measures- with the help of our old friend, macro
\pagespace-the amount of space left on the cur-
rent page. If there is enough space, it typesets \box0
immediately, otherwise. it inserts it in \midins.

\def\midinsert<\par\begingroup
\setboxO=\vbox\bgroup}

\def\endinsertC\egroup % finish the \vbox
\pagespace
\dimenO=\htO \advance\dimenO by\dpO
\ifdim\dimenO>\spaceleft

\insert\midins<\unvboxO}
\else

\box0 \bigbreak
\f i

\endgroup}

594 TUGboat, Volume 11 (1990), No. 4

\output={\shipout\box255
\ifvoid\midins\else\unvbox\midins\fi
\advancepageno)

Note that \unvboxO, not \boxO, gets inserted
in \midins. This way the insertion material is the
contents of \box0 and, if it is too large, TEX will
be able to split it (unless it is itself a box). Also,
the \unvbox\midins has the effect of placing the
contents of \midins as a top insert at the head of
an otherwise empty MVL.

The maximum size of inserted \midins material
per page is the value of \dimen\midins which, in
our case, is \vsize. This means that the entire page
can be devoted to \midins insertions. However,
if we set \dimen\midins=2in then each page will
contain at most 2 inches worth of material from
\box\midins. If \box\midins contains more than
\dimen\midins of material, some of it will be held
over to the next page (requiring, perhaps, splitting
one block of insertion material).

If the contents of \box0 is another box, then it
is indivisible, and TFJ will not split it. In such a
case, more than \dimen\midins worth of material
may appear on a page. In fact, the resulting
page may even be larger than \vsize, and no
error message would be issued. Thus when using
unsplittable insertions, the user should make sure
that they are not too big. A detailed discussion of
insertion splitting appears later.

The appearance of the text can be improved
if we automatically add some glue, such as a
\bigskip, after each insertion. If a page is broken
between the insertion and the glue, the glue will. as
usual, be discarded at the top of the new page. Also,
the natural size of the \bigskip, 12pt, should be
included in the test for space left. Only \endinsert
needs to be modified.

\def\endinsertC\egroup % finish the \vbox
\pagespace
\dimenO=\htO \advance\dimenO by\dpO

\advance\dimenO by \bigskipamount
\ifdim\dimenO>\spaceleft

\insert\midins{\unvboxO \bigskip)
\else

\box0 \bigskip
\f i

\endgroup)

Readers experimenting with these macros will
discover very quickly that insertions are sometimes
typeset in reverse order. This may occur when
a large insertion appears close to the bottom of
a page. Imagine a situation where 3 inches are
left on the page and the user calls \midinsert to
insert a binch-tall figure. \endinsert will save

the figure in \midins and it will eventually appear
at the top of the next page. Imagine now that
the user immediately calls \midinsert to insert
another figure, only 2 inches tall. Since there is
room on the current page for the second figure, it
will be inserted in place, with the result that the
two figures are now inserted in reverse order.

A simple (but, unfortunately, incomplete) so-
lution is: A new boolean variable, \ifsavedl is
declared. When an insertion is placed in the inser-
tion box, \endinsert invokes the OTR temporarily,
using a penalty of -10001. The OTR sets \if Saved
to true, and returns without shipping out anything.
When the OTR is invoked normally. it sets \if Saved
to false. \if Saved therefore indicates whether an
insertion has been saved on the current page.

When \endinsert finds that there is room
on the current page for the current insertion, it
typesets it only if \ifsaved is false.

\newif\ifSaved \Savedfalse

\def\midinsert{\par\begingroup
\setboxO=\vbox\bgroup)

\def\endinsertC\egroup % finish the \vbox
\pagespace
\dimenO=\htO \advance\dimenO by\dpO
\ifdim\dimenO>\spaceleft

\insert\midins{\unvboxO)\penalty-10001
\else

\if Saved
\insert\midins{\unvboxO)

\else
\box0 \bigbreak

\f i
\f i

\endgroup)

\output={%
\ifnum\outputpenalty=-10001

\global\Savedtrue
\unvbox255

\else
\global\Savedf alse
\shipout\box255 \advancepageno
\ifvoid\midins\else\unvbox\midins\fi

\f i)
This is a good solution that works almost

always. It may fail in some rare cases, however.
The reason is that \penalty-10001 does not invoke
the OTR immediately. The penalty is stored in the
MVL, and is only noticed by TFJ when it starts
looking for a good point to break the page. This
process is explained in detail in part 11. but here is
an example.

TUGboat, Volume 11 (1990), No. 4 595

Imagine a case where there is an insertion. with
\penalty-10001, on line 60, and page 7 should be
broken around that line. When TEX invokes the
page break algorithm, it notices the special penalty,
breaks the page at that point, and invokes the
OTR. The OTR also senses the special penalty and
assumes that there is an insertion on page 7. The
OTR then returns the material to the MVL, which
causes QX to immediately start looking for a page
break. Since the special penalty is no longer there
(Note 16), Q,X may select a different breakpoint,
such as line 59. Line 60 is now the first line of
the next page, page 8, but the OTR has already
assumed that there is an insertion on page 7.

\t opinsert and \pageinsert. These macros are
part of the plain format, in addition to \midinsert
[115-1161. Material appearing between \topinsert
and \endinsert is considered a floating top inser-
tion. QX will try to place it at the top of the
current page but, if there is not enough room on
the current page, the material will be placed at the
top of the next one. Similarly, material appearing
between \pageinsert and \endinsert is stretched
to the size of a page, and becomes the next page.

Readers who have read the preceding text and
examples are urged to look at [363] and try to
understand the definitions of the three macros.

Example: Two insertion classes

It is possible, of course, to declare several insertion
classes and limit the amount of insertions placed on
a page from each class. Following are the outlines
of a case where two insertion classes, \midins and
\f ootins are declared and limited to 2.5in and
lin per page. respectively.

\output={\shipout\vbox(\box255
\ifvoid\footins\else

\vskip\skip\footins
\kern-3pt\hrule width2in\kern2.6pt
\box\f ootins

\f i3
\ifvoid\midins\else\unvbox\midins\fi
\advancepageno>

The OTR ships out \box255 followed by the
footnotes, and Q,X's insertion mechanism guaran-
tees that the total amount of footnotes will not
exceed lin per page. Also, if there are \midins
insertions. they will not exceed 2.5in per page.

It is now clear why material is not inserted
directly into the insertion box but is saved in a
temporary buffer. This is how insertion material
can be held over for the next page. Right before
the OTR is invoked, the right amount of material is
moved from the buffer and is placed in the insertion
box.

The plain format OTR

Short and elegant. this OTR makes a good example.
since it supports both footnotes and floating inser-
tions. It is described on [255-2561 and, therefore.
only a few short remarks are necessary here. The
first step is to define a macro \plainoutput

\def\plainoutput(\shipout\vbox
(\makeheadline\pagebody\makefootline>

\advancepageno
\ifnum\outputpenalty>-20000

\else\dosupereject\fi)

following which, the OTR is defined by

\output=C\plainoutput>

This way, the OTR can be redefined and then reset
back to its original definition.

\def\makeheadline{\vbox toOpt{\vskip-22.5pt
\line{\vbox to8.5pt{>\the\headline>\vss)
\nointerlineskip)

Macro \makeheadline is the first item shipped.
It suppresses the normal interline glue, so it is placed
right on top of the second item (which is supplied by
\pagecontents, see below). To achieve a uniform
appearance of the document, the headline should
have the same position, relative to the main body of
the text, on all the pages. Its baseline is positioned,
by \makeheadline, exactly 24pt above the baseline
of the top line of \box255. This is achieved by
placing the headline in a \vbox toopt, moving up
22.5pt in the box, and typesetting the headline. The
quantity 22.5pt (see diagram on following page) is
the value that x should have in order that x + 10
should be equal to 24 + 8.5.

The quantity \headline is declared as a \toks
variable by \newtoks\headline and is set to an
empty line \headline=(\hfil). It can be reset by
the user to any token string.

Macro \pagebody limits the depth of the page
to the value of parameter \mudepth. whose plain
format value is 4pt [348]. (See discussion of
\bornaxdepth in part I. See also the section, later
in this part, on the depth of the current page.)

Position of Headline

\def\pagebody{\vbox to \vs ize
{\boxmaxdepth=\maxdepth \pagecontents31

The \pagecontents macro starts by preparing
the floating insertions, if any. It then opens \box255
and, finally, prepares the footnotes, if any.

\def\pagecontents
{\ifvoid\topins\else\unvbox\topins\fi
\dimenO=\dp255 \unvbox255
\ i f vo id \ foo t ins \e lse

\vskip\skip\ foot ins
\ footnoteru le
\unvbox\f oot ins

\ f i
\ i fraggedbottom \kern-\dimen0 \ v f i l \ f i)

The two insertion boxes and \box255 are opened.
exposing their glues. The glues are now flexed
to help \pagebody prepare a \vbox to \vs ize. If
the user wishes a ragged bottom, a \ v f i l glue is
placed at the bottom of the page. This glue is
flexed together with the other flexible glues on the
page, leaving a glob of glue of non-zero size at the
bottom of the page. The result is pages in which
the bottom lines are not all at the bottom of the
page. It should be noted that the definition of
\raggedbottom (on 13631) also makes the \ topskip
glue stretchable, and that there is a \normalbottom
macro (defined on the same page) that cancels the
ragged bottom effect.

Macro \f ootnoteru le creates the rule separat-
ing the footnotes from the main body of the text.
The rule is placed 3pt above the top footnote.

\def\footnoterule{\kern-3pt
\hru le width 2 t rue in \kern 2.6pt)

% t h e \h ru le is .4pt high

Finally, macro \makef oo t l i ne places the foot-
line 24pt below the main body of the page.

\def\makefootline{\baselineskip=24pt
\ l ine{\ the\foot l ine))

TUGboat, Volume 11 (1990), No. 4

The footline itself is a \ toks variable declared
by \newtoks\f oo t l i ne , and is set to

\footline={\hss\tenrm\folio\hss~

The page number. Some of the information in
this section has already appeared in part I, and is
repeated here for the sake of completeness.

In book publishing, both roman and arabic
numerals are used for page numbers. Variable
\count0 is reserved by the p l a i n format for the page
number (\countdef \pageno=O) and, consequently,
should not be used for anything else. It is initialized
to one (\pageno=l), and is handled by several useful
macros:

Macro \ f o l i o typesets the page number either
in arabic numerals or, if it is negative, in roman
numerals.

The \nopagenumbers macro suppresses page
numbers by eliminating them from the \ foot l i ne .

Macro \advancepageno increments the page
nurnber by either 1 or -1. depending on its sign.

In certain documents, composite page numbers
are used, which consist of more than one number. A
page number such as 12-52 is common and usually
refers to page 52 of chapter 12. The best way to
implement such numbers in is to use some of the
ten counters \count0 through \count9 1119, 2541.
They should be declared, initialized, incremented
and typeset by the user. lQX. however, helps in
two ways:

0 It writes the values of the ten counters on
the dvi file with each page. This helps the preview
program and the printer driver identify the pages
previewed or printed. In fact, those programs do
not know what page number actually appears on
the page. and they consider the ten values on the
dvi file as the page number. The user should thus
refer to those ten numbers when communicating
with any program that handles the dvi file.

0 TEX also displays the ten counters on the
user's terminal. with trailing zeros omitted, when
a page is shipped out. This is how things such as
[I] , C12.0.521 are displayed at typeset time.

\superej ec t

The \bye control sequence, which is the rec-
ommended way to stop, is a macro defined by

TUGboat. Volume 11 (1990), No. 4 597

\par\vf ill\supere j ect\end. Why \supere ject
and not just \eject? And what is \supereject?

If many insertions are used throughout a doc-
ument, there is a good chance that, after the last
page is shipped out, some insertions will be left in
their buffers, waiting to be typeset. This should be
done as part of the 'end game' of m. which is
initiated by the \supere j ect macro [116].

It is defined on [353] as \par\penalty-20000.
The plain format output routine tests (on [255]) for
this value and, if \outputpenalty=-20000, expands
macro \dosupere j ect. This macro. defined on
[256], tests the parameter \insertpenalties (see
below) to see if any insertions remain heldover in
their buffers. If there are any, \dosupereject
makes sure that the output routine will be invoked
again, giving it a chance to shipout those insertions.
To make sure that the OTR is invoked again,
\dosupereject prepares a blank page in the MVL
by executing \line{)\vf ill\superej ect. This
generates vertical material with a blank line at the
top and a penalty of -20000 at the bottom. The
material is simply left in the o ~ ~ (m o r e precisely,
put on the vertical list constructed by the OTR),
which means it will be returned to the MVL, causing

to invoke the OTR again.
When the OTR is invoked again, it will out-

put another page and, as usual, place \topskip
worth of glue on top of it. To cancel that glue,
\dosupereject really generates:
line{)\kern-\topskip\nobreak
\vfill\supereject

[256], but this is a minor point.
If there are any insertions left, they will be

placed in their boxes each time the OTR is invoked
for an empty page. The amount of inserted
material per page is controlled, as usual. by the
\dimen variable associated with the insertion.

A simple example is the endnotes described
earlier. In that example, notes are accumulated in
a temporary buffer, and should be typeset at the
end of the document. This has to be done from the
OTR, and the best way to do it is to use the special
penalty generated by the \bye.

This is one of many internal quantities that
uses (see the complete list on [271]). During an
OTR, it is equal to the total number of heldover
insertions [254] (Note 17). A heldover insertion is
an insertion (a parameter of an \insert command)
that should have been typeset on the current page
but, because of lack of space on that page did not
make it, and will be made available to the OTR

in the next page. Such a heldover insertion is

sometimes split and only part of it appears on the
current page.

Insertions (advanced)

This is advanced material, potentially useful to users
who are heavily involved with OTRS and insertions,
or to people who want a deeper understanding of
TjijX. For most users, however, the following quote
(from [123]) may apply: "On the other hand, maybe
you don't really want to read the rest of this chapter
at all, ever."

The current page and the list of recent con-
tributions. As mentioned in part 11, the MVL
consists of two parts, the current page and, below
it, the lzst of recent contrzbutzons. The current page
holds the material that will become \box255. The
recent contributions temporarily hold recently read
material. After an entire paragraph has been read,
it is typeset, and the lines of text appended to the
recent contributions. At that point, the page budder
is invoked (exercised). Its job is to move lines, one
by one. from the recent contributions to the current
page. For each line, the page builder calculates the
cost of breaking the page after that line. For the
first couple of lines the cost is very high because
breaking there would result in a stretched page.
Thus, for those lines, the badness b becomes 10000
and the cost c. 100000 (see formula on [I l l]) .

At a certain point-when there are enough
lines in the current page. for a normal page-b
(and, as a result, c) starts getting smaller. A while
later, there may be too many lines of text on the
current page, and it has to be shrunk. increasing
b and c again. The entire process can be seen. in
real time. by setting \tracingpages=l [112]. If
the page has to be shrunk more than its maximum
shrinkability, both b and c become infinite. When
c becomes infinite (or when a penalty 5 -10000 is
found, see below) the page builder goes back to the
line of text where the cost was lowest, breaks the
top of the current page and places it in \box255
[§1017]. The bottom part of the current page is
then returned to the recent contributions, and the
page builder invokes the OTR.

The page builder is exercised at the end of a
paragraph, at the end of a display equation within
a paragraph, at the end of an \halign, and in a few
other cases (see [122, 2861). The OTR can only be
invoked by the page builder [§1025], which is why it
is never invoked in the middle of a paragraph (unless
the paragraph contains display math material).

The advanced reader might want to glance at
[§980-10281 for the actual code of the page builder.

Since the page builder is exercised quite often.
the list of recent contributions is usually small or

598 TUGboat, Volume 11 (1990), No. 4

Figures. 1-4.

empty, and the current page gets larger and larger.
When the OTR is invoked, the current page is empty.
The \showlists command can always be used to
display the two parts of the MVL in the log file.

The quantity t (\pagetotal) mentioned before
as the height of the MVL is. actually, the height of
the current page. It is updated by the page builder
each time a line (or glue) is added to the current
page.

A better understanding of this process must
include glue and penalties. They are appended to
the recent contributions, with the lines of text. when
a paragraph is typeset, and are eventually moved to
the current page. If the current page is empty, all
glues, kerns and penalties moved to it are discarded.
When the first box is moved to the current page,
glue is added above it to keep its baseline \ topskip
below the top of the page. Following that, all glue.
kern, and penalties are moved, with the text, from
the recent contributions to the current page.

When a penalty 5 -10000 is encountered,
breaks a page. The resulting page may be underfull.
Such penalty values can be used to eject a page (by
\vf i l l \penalty-10000), or to communicate with
the OTR.

It should be stressed again, however, that
\penalty- 10000 does not invoke the OTR zmme-
diately. If such a penalty is created inside a
paragraph, between lines of text, it is saved in
the recent contributions with the lines, and is only
recognized as special when it is moved, by the page
builder, to the current page. As a result, if a
paragraph contains:

the OTR will be invoked after the entire paragraph
has been read and broken into lines, and will find
\dimen0 to be Ipt .

A page can be broken only at a glue, kern or
penalty. If a page is broken at a glue or kern,
the glue stays in the recent contributions (to be

discarded when moved to the top of the next page).
If the page is broken at a penalty, the penalty
is saved in variable \outputpenalty and removed
from the vertical list. This variable can be used
to communicate with the OTR. Also, if the user
wants to return some material from \box255 to the
current page, he may want to reinsert the penalty,
by saying \penalty\outputpenalty.

Insertions and the page builder. We are now
familiar with how the MVL is maintained in cases
that don't involve insertions. In this section we
see how insertions are handled in the MVL by
the line break algorithm and the page builder.
Let's assume that an insertion class n has been
defined. When an \ i nse r t n is read from the
source file, both the command and its insertion
material are placed in the recent contributions. The
next time the page builder is exercised, it finds
the command, followed by the insertion material.
The material should not be moved to the current
page, since it is an insertion (review the definition
of insertions). Instead, it should be moved to
\boxn, so the OTR should be able to typeset it
anywhere on the page. However, material is only
moved to \boxn just before the OTR is invoked (see
below). Therefore, when the page builder discovers
the command, it (1) moves the command (and the
insertion material), to the current page, but as a
special item, not as a regular part of the current
page (the material will later be moved to \box n
from the current page); (2) decrements g by the size
(height plus depth) of the insertion material.

Figures 1-2 show a paragraph (A-B) read into
the recent contributions and moved to the current
page. Figures 3-4 show how an \ i nse r t \ f i g
command, followed by insertion material (C-D), is
also read into the recent contributions and moved.
as a special item, to the current page.

Splitting insertions. Before the page builder
decrements g, it executes the rules on [123-1241
to determine how much of the insertion material

TUGboat, Volume 11 (1990), No. 4 599

can appear on the page. If there is no room for
the entire insertion-either because it is large, or
because \dimen n has been assigned a small value -
the rules tell how to determine a good point to split
the insertion material so the remainder can be held
over for the next page. The result obtained by the
rules is used to decrement g, to reserve room on the
page for the insertion.

Again, it should be emphasized that the split
itself does not occur at this point. It takes place
just before the OTR is invoked (see below). At that
time, the top part of the split insertion is placed in
\boxn, and the bottom part is saved as a heldover
insertion.

The rules for splitting insertions, in simplified
form, are:

1. The first \ i nse r t n for the page decrements
g by (the natural size of) \sk ipn, and again by
the height plus depth of \boxn. Note that g is
not decremented by the size of the present insertion
(this is done in rule 3.)

What can \box n contain at this point?
la . It may be empty.
lb . It may contain material from the previous

page. Typically, such material should have been
typeset, by the OTR, on the previous page, and
\box n emptied. However, if the OTR did not empty
the box, room is now reserved for its contents on
the present page.

lc. It may contain material placed there by
the user explicitly, not through the \ i nse r t n
command. In such a case, room is now reserved
on the page for this material. If anything is placed
explicitly in the box after this point, no room will
be reserved for it on the page [§1009].

2. If a previous \ inser t n on the current page
has been split (because it didn't fit on the page). the
present insertion will certainly not fit on the page,
and has to be held over. The only thing done at
this point is to increment \ inser tpena l t ies by the
parameter \f loat ingpenalty. This increases the
cost of breaking the page at this point. See [124-1251
for examples of values of \f loat ingpenalty.

3. Determine if the insertion will fit on the
page without being split. If it will, decrement g
by the size x (height plus depth) of the insertion
material. Otherwise go to step 4 to calculate the
split size.

We denote the quantity 0.001\count n by f.
The value of g should be decremented by the scaled
size xf of the insertion material.

An insertion will fit on the page if its scaled
size x f is zero (or negative), or if

xf 5 9 - t (1)

or if \count n = 0. The actual test also includes
the \pagedepth, \pageshrink parameters, which
are ignored here for simplicity. They are introduced
in a later section.

4. Determine where to split the insertion. Let's
assume that we end up splitting \ inser t n at a
distance v from its top. What determines v? After
the material is split and is placed in \boxn, the
box's vertical size increases to x + v. The value
of v should, therefore. be the largest number that
satisfies (a) the new size, x + v, of \boxn should
be 5 \dimenn; (b) v should also be 5 g - t (the
available space on the page). Relation (b) will also
be modified later.

Since a split must occur between lines of text,
it may be impossible to split \ i nse r t n to v.
therefore uses an algorithm, similar to the page
builder but without insertions, to determine a value
u close to v .

g is now decremented by u and the parameter
\ inser tpena l t ies is incremented by the penalty
value (if any) found at the spljt point. The page
builder marks this insertion. in the current page,
as a split insertion. Note that the split itself does
not take place at this point. It is done after the
page breakpoint is determined, and before the OTR

is invoked.
All this happens when an \ inser t command is

discovered by the page builder on the recent contri-
butions, and is moved to the current page [§1000,
$10081. The page builder continues its operations
and, finally, decides on a good breakpoint for the
page. (Note: The value of \ inser tpena l t ies is
used to help make the decision and, once it is made,
\ inser tpena l t ies is free to be used for something
else.) Fig. 5 shows an example of a current page
with 3 paragraphs (A-B, E-F, and I-J) and 3 in-
sertions (C-D, G-H and K-L) the second of which
is stored in the current page as a split insertion (the
'*' marks the split point.) The recent contributions
list is empty.

The page builder then (see [125]) removes the
bottom of the current page (everything below the
breakpoint) and returns it to the recent contri-
butions (Fig. 6). The next step is to place all
the insertion material of class n in \boxn. The
page builder scans the current page and, for each
\ i nse r t n found, appends the insertion material to
\boxn. When it finds a split insertion, it performs
the actual split, appends the top partyof the split
material to \boxn, and saves the bottom, as an in-
dependent insertion, in a separate place. All class n
insertions found on the current page following this
point, are saved in the same way, to be held over
(Fig. 8).

TUGboat, Volume 11 (1990). No. 4

the new parameter \holdinginserts to a positive
value.

This feature will be mentioned on [I251 starting
with the seventeenth printing of The m b o o k .

Tracing (in detail)

As mentioned before. a good way to learn about
insertions is to trace the internal operations of E X
while it handles this 'sensitive' material. Fortu-
nately, several tracing commands [303] are available,
to bring out and print the values of many internal
quantities. The most useful to us are \message,
\tracingpages and \showlists. The following
examples illustrate tracing, and should be studied,
performed, and modified by the serious reader. This
is an excellent way to understand the operations
discussed in the previous section.

We start with a simple example involving 5
short paragraphs, and 4 unsplittable insertions.

\mesl
Tracing insertions. Both message \&
tracingpages are used to keep track
of the values of certain quantities
involved with insertions. This helps
to understand the operations of the
page builder. \par\mes2

\insert\trace{\vbox to30pt{%
A 30pt insertion\vfil\hrule}}

Paragraph 2 \par\mes3

\insert\trace<\vbox to25pt{%
A 25pt insertion\vfil\hrule>}

Paragraph 3 \par\mes4

\insert\traceC\vbox to20pti%
A 20pt insertion\vfil\hrule}}

Paragraph 4 \par\mes5

\insert\tracei\vbox tol5pt{%
A 15pt insertion\vf il\hrule}}

Paragraph 5 \par\mes6

\bye
Typesetting the material above creates three

small typeset pages (only the first two of which are
shown here.)

Tracing insertions. Both message & tracing-
pages are used to keep track of the values of certain
quantities involved with insertions. This helps to
understand the operations of the page builder.

A 30pt insertion

Paragraph 2
Paragraph 3

A 25pt insertion

A 20pt insertion

It also generates the following log file.

1. \trace=\insert252
2.1: O.Opt, 16383.99998pt, 0;
3.%% goal height=l00.0, max depth=4.0
4.% t=10.0 g=lOO.O b=l0000 p=250 c=l00000#
j.% t=22.0 g=lOO.O b=10000 p=O c=l00000#
s . % t=34.0 g=100.0 b=10000 p=150 c=100000#
7.2: 46.0pt, 100.0pt, 0;
s . % t=46.0 g=58.0 b=10000 p=O c=100000#
9.3: 58.0pt, 58.0pt, 0;

lo.% split252 to -1.94444,25.0 p=-10000
1 i . X t=58.0 plus 1.0 g=33.0 b=* p=O c=*
12. R: 58.0pt, 0; [I]
13.%% goal height=100.0, max depth=4.0
14.X t=10.0 g=63.0 b=l0000 p=O c=l00000#
15.4: 22.0pt, 63.0pt, 0;
16.% tZ22.0 plus 1.0 gz43.0 b=10000 p=O
17. ~=~ooooo#
1s. 5: 34.0pt, 43.0pt, 0;
19.x split252 to 7.05556,15.0 p=-10000

602 TUGboat, Volume 11 (1990), No. 4

20.;: t=34.0 plus 2.0 g=28.0 b=* p=O c=* looking for a page break, so the page builder goes
21. R: 43.0pt, 0 ; [21 back to the point, in the current page, with the
22 .%% goal height=100.0, max depth=4.0 least cost, and breaks the page there. What is that
2 3 . X t = l O . O g=73.0 b=10000 p=O c=100000# point? The current page contains 5 lines. Each of
2 4 . 6 : 22.0pt, 73.0pt, 0; the first 4 lines is associated with a cost of 100000,
25 .X t=22.0 plus 1.0 g=73.0 b=10000 p=O and the last line has infinite cost. The most logical
26. c=lOOOOO# point for a page break is, therefore, following the
27. % t=23.94444 plus 1.0 plus I . Of ill g=73.0 fourth line.
28. b=O p=-20000 c=-20000#
29 R : 73.0pt, 0 ; [3]

Message 1 (line 2) shows the values of t and g
before encounters any text. Line 3 (with %%)
shows the goal height, which is still \vsize. Line 4
is generated when the first text line is moved to the
current page. It shows t = lOpt, the height of the
first line of text (plus the \ topskip glue above it).
Line 5 shows t = 22pt, which is the height of the
first text line, plus the \basel ineskip following
it, plus the height of the second line of text (the
depth of the last line is the depth of the page, and
is therefore not included in t). Lines 6-8 show t
growing in steps of 12 pt until it reaches 46 pt, the
total height of the 4 lines of the first paragraph.
Message 2 (line 7) shows t = 46 pt and g = 100 pt,
still equal to \vsize. However, line 8 shows that g
was decremented, as a result of the first \ i nse r t .
from 100 to 58, a difference of 42pt. This equals
the size (30pt) of the material inserted, plus the
natural size (12 pt) of \skip\ trace.

Message 3 (line 9) shows t = 58pt, because
the second paragraph (a single line) was read,
typeset, and moved to the current page. At this
point both t and g equal 58 pt (but for different
reasons!). It would seem like an ideal point to
break the page, but the page builder starts looking
for a page break only when c = cc or when the
current penalty 5 -10000 [§1005]. So it reads the
next item from the source file, which happens to be
the next insertion (25pt). The page builder tries
to move it to the current page, and it executes the
4 steps on [123-1241. Steps 1, 2, don't apply. The
test in step 3 is not passed, so the page builder goes
to step 4 and calculates a good splitting point for
the insertion. The test on the second line of [I241
results in v = -d (since t = g and f = 1). This
means that the ideal split is at a point 1.9444pt
above its top. This is why line 10 shows that the
page builder has tried to spl i t252 t o -1.94444.
This is a strange split but, in any case, it cannot be
done since the insertion is a box. The page builder
thus moves the entire insertion to the current page,
and decrements g to 33pt.

However, the 58 pt of material cannot be shrunk
to 33pt, resulting in line 11 with b=* p=O c=*,
infinite badness and cost. This is the time to start

The part of the current page below the break-
point (consisting of the line "Paragraph 2" and
the 25 pt insertion) is returned to the list of recent
contributions. The insertion material from the cur-
rent page is moved to \box\trace, the rest of the
current page is moved to \box255 (actually, the rest
of the current page becomes \box255), and the page
builder invokes the OTR.

A \showl ists command placed in the OTR

would show no current page, and recent contribu-
tions consisting of the line "Paragraph 2" and the
25 pt insertion.

The R message (line 12) shows \ht255 = 58pt,
so the total height of the page shipped out is
58 + 12 + 30 = 100 pt. This is a successful case since,
with many unsplittable insertions, some pages must
be stretched a lot.

The next page starts with (line 14) t = lOpt
(one line of text, "Paragraph 2"), and g = 63pt
(= 100 - 12 - 25). On lines 16-18 t is incremented to
34pt. which means that 3 lines of text (paragraphs
2, 3 and 4) are tentatively considered). Message 5
(line 18) shows g = 43pt which means that the 20 pt
insertion has been read. It also shows t = 34pt
which means that there is still room on the page for
9 pt worth of material (typically 7 pt high and 2 pt
deep).

The next item is read from the source file. It
is the 15pt insertion. the page builder calculates
(line 19) a split point (sp l i t252 t o 7.05556) but,
since it is an (indivisible) box, it cannot be split.
It is moved to the current page, causing an infinite
cost (line 20). A page break point is determined as
before, and it is following the second line ("Para-
graph 3"). Paragraph 4 and the 15pt insertion are
returned to the list of recent contributions, and the
current page becomes \box255.

The R message (line 21) shows \ht255 = 43 pt.
The box contains just two lines of text (a height of
22 pt) and was stretched to 43 pt at the paragraph
break.

The rest of the log file, pertaining to the third
page, is easy to read and is left as an exercise.

Exercise: Add flexibility to \sk ip \ t race
(such as 12pt plus6pt minus4pt) and typeset the
example. Make sure that you see how the flexibility
is reflected in the values for t.

TUGboat, Volume 11 (1990), No. 4

Exercise: Change \vsize to 90 pt and repeat
the experiment. The main changes should be in
the splitting. The page builder will try to split the
insertions at different points. Since the insertions
are indivisible, they will not be split.

Exercise: Add \showlist s commands after
each \message, and in the OTR. You may have
to fiddle with the values of \showboxbreadth and
\showboxdepth in order to get the right amount of
output.

The next experiment deals with splittable in-
sertions. We modify the source file to:

\hsize=3in \vsize=lOOpt
\tracingpages=l
\showboxbreadth=1000 \showboxdepth=l

Tracing insertions. Both message \&
tracingpages are used to keep track
of the values of certain quantities
involved with insertions. This helps
to understand the operations of the
page builder. \par\mes2

\insert\traceC\noindent* This is the
first insertion, about four lines worth
of text. This would make it possible
for \TeX\ to split the insertion,
if necessary. Up until now our insertions
were unsplittable)
Paragraph 2 \par\mes3

\insert\trace(\noindent* This is the
second insertion, three lines worth
of text. This would make it possible
for \TeX\ to split the insertion, if
necessary.}
Paragraph 3 \par\mes4

\insert\trace{\noindent* The third
insertion, four lines worth of text,
to illustrate the insertion splitting
rules on [123]. Note how this is split,
and how the split part is typeset
following the text on this page.)
Paragraph 4 \par\mes5

\insert\trace{\noindent*
Insertion 4, one line.)

Paragraph 5 \par\mes6
\bye

This produces 3 typeset pages, only the first 2
of which are shown here.

Tracing insertions. Both message & tracing-
pages are used to keep track of the values of certain
quantities involved with insertions. This helps to
understand the operations of the page builder.

* This is the first insertion, about four lines worth
of text. This would make it possible for TEX to
split the insertion, if necessary. Up until now our

-1-

Paragraph 2
Paragraph 3

insertions were unsplittable
* This is the second insertion, three lines worth of
text. This would make it possible for TJ$ to split
the insertion, if necessary.
* The third insertion, four lines worth of text, to il-

-2-

It also generates the following log file:

\trace=\insert252
1: O.Opt, 16383.99998pt, 0 ;
%% goal height=l00.0, max depth=4.0
% t=lO.O g=100.0 b=l0000 p=250 c=l00000#
% t=22.0 g=100.0 b=10000 p=O c=100000#
% t=34.0 g=100.0 b=l0000 p=150 c=100000#
2: 46.0pt, 100.0pt, 0;
% split252 to 40.05556,33.44444 p=150
% t=46.0 g=54.55556 b=10000 p=O c=100000#
3: 58.0pt, 54.55556pt, 150;
% t=58.0 plus 1.0 g=54.55556 b=* p=O c=*
R: 54.55556pt, 1; [I]
%% goal height=100.0, max depth=4.0
% t=O.O g=76.05556 b=l0000 p=O c=l00000#
% t=10.0 g=42.61111 b=10000 p=O c=100000#
4: 22.0pt, 42.61111pt, 0;

604 TUGboat, Volunle 11 (1990), No. 4

% split252 to 18.66667,9.44444 p=250 Summary
% t=22.0 plus 1.0 g=33.16667 b=10000 p=O

c=100000#
5: 34.0pt, 33.16667pt, 250;
% t=34.0 plus 2.0 g=33.16667 b=* p=O c=*
R: 33.16667pt, 1; [2]
%% goal height=l00.0, max depth=4.0
% t=O.O g=52.05556 b=10000 p=O c=100000#
% t=lO.O g=42.61111 b=10000 p=O c=l00000#
6: 22.0pt, 42.61111pt, 0;
% t=22.0 plus 1.0 g=42.61111 b=10000 p=O

c=100000#
% t=23.94444 plus 1.0 plus l.Ofill

g=42.61111 b=O p=-20000 c=-20000#
R: 42.61111pt, 0; [3]

The main differences between this experiment
and the previous one are:

1. Insertions can now be split. The message
split252 t o 40.0555,33.4444 p=150 shows that
the first insertion should, ideally, have been split
at a distance of 40pt from the top. Such a
point, however, is between two lines of text. so the
insertion ended up being split at 33.4pt, after the
third line of text. Note the widowpenalty of 150
found there.

The split operation is similar to a page break,
a fact which shows us how to control insertion
splitting. We can, e.g., place a penalty of -10000
in the first insertion.

\insert\traceC\noindent* This is the first
insertion, about four lines worth of text.
\vadjust{\penalty-10000) This would make
it possible . . . were unsplittable)

This will force a split of the insertion after the
second line. The log file will now contain the line:

split252 to 39.5,21.6527 p=-10000

showing that the split occurred 21.6 pt from the top
(a height of two lines) because of the large negative
penalty found.

2. The displayed values of \insertpenalties
show the dual nature of this parameter. Several mes-
sages display the value 150 (= \widowpenalty). In
the OTR, however, the value of \insertpenalt ies
is not a penalty but the number of heldover in-
sertions. When the first page is shipped out. the
second insertion has already been read, and is being
held over, together with the split part of the first in-
sertion. As a result. the value of \insertpenalties
in the OTR is 2.

Exercise: Place \showlists commands after
each \insert\trace{. . . I and in the OTR. This
will show how inserted material is stored in the
recent contributions and in the current page.

This is a tutorial, not a cookbook. It does not
contain any canned macros that can be directly
copied and used. Instead. it tries to develop
a better understanding of insertions. so that the
reader will be able to implement insertions for
specific applications.

All the material presented here (except, per-
haps, some examples) can be found in The m b o o k .
although in a somewhat cryptic language. The se-
rious reader should, therefore, after reading this
tutorial and doing the exercises, go back to the
book to get a different perspective on the topics
discussed here.

Endnotes

[l] This is an endnote. Look at the endnotes
example to see how it works.

[2] The idea is that, when a textbook is written,
items that should appear in the index of the book
should be flagged by the author and written by
on a file, for the future preparation of an index.
While the book is being written and proofread.
it is also handy to have all the index items for
a page printed on the right margin of that page.
On the final printing of the page, those items are
suppressed.

[3j Given two large figures that are textually related.
they should be inserted into the document close to
each other. If they don't both fit on one page. they
should be inserted on facing pages, which means
that the first figure should be inserted on the next
even-numbered page, and the second figure, on the
page following.

[4] All that the user has to do is save the figures
in boxes and check, in the OTR, for the next
even-numbered page.

[5] Answer: Because glue and kern are discardable
items and disappear at a page break.

[6] Actually, in a temporary place.

[7] Actually, just before the OTR is invoked. the
material is brought in from temporary storage and
is appended to the box. Note that the allocated box
may contain other material. placed there by the user
not through the \insert command. Such material
remains in the box and is eventually typeset on the
page by the OTR. However. no room is reserved on
the page for such material, and it may cause a page
overflow.
[8] Actually, in a temporary buffer.

[9] We use t to denote \pagetotal, and g to denote
\pagegoal.

TUGboat: Volume 11 (1990), No. 4

[lo] The temporary buffer is appended to it.

[11] The \ v s p l i t command works by splitting a
vbox at a permissible point. If the insertion material
is made up of line boxes, it will be split between
lines, not in the middle of a line. Penalties also
control the split. Sometimes a box will be split
at a point away from where we wish, because of a
penalty that encouraged breaking the box at that
point. However, the material split will be shrunk or
stretched to bring it to the desired size.

[12] Although it cannot do the entire job.

[13] If the amount of marginal notes exceeds \vsize.
some of it will be printed off the page, but will not
be held over to the next page.

1141 Because of the narrow box width, there
will be overfull boxes, but the thick vertical
bars accompanying them can be eliminated by
\overful l ru le=Opt.

1151 Things like \hs ize=xxx. \ raggedr ight, and
\obeylines.

[16] It is not returned to the MVL when the OTR
says \unvbox\midins.

[17] However, outside the OTR it contains. not the
number, but the sum of penalties. of all the heldover
insertions [I l l] .

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330
dxsQrnx. csun. edu

Macros

A New Ed i t o r

Victor Eijkhout

Starting this issue, I've joined the editorial commit-
tee as associate editor for macro affairs (see the re-
verse of the title page for the other members).

The fact that incoming articles about T~Xnical
affairs will undergo my scrutiny does not mean that
there is suddenly a large chance that submitted ar-
ticles will be returned, rubber-stamped 'rejected'.
My job will be to assist authors in creating articles

that are of maximum value to the TUGboat reader-
ship. Often this means that my main concern is .how
well does this article explain whatever it is telling',
rather than 'is this all completely original'. Remem-
ber that rn is not something you read about, it is
something you actually do. The subject matter of
the article is therefore a secondary concern: TUG-
boat is read by beginners and grand masters alike.
so articles need not be very high-brow. In fact, we
need more articles that help the beginners take the
first steps to grand masterhood.

Let these few lines with which I have introduced
myself then also be an invitation to prospective au-
thors: if you have done something new, or if you
have something interesting to say about something
old, write it down. and send it to TUGboat. Should
you have trouble with the finishing touch, send in
what you have and we will discuss it.

Victor Eijkhout
Center for Supercomputing

Research and Development
University of Illinois
305 Talbot Laboratory
104 South Wright Street
Urbana, Illinois 61801-2932. USA
eijkhoutQcsrd.uiuc.edu

Line Break ing i n \unhboxed Text

Michael Downes

In the course of my work (macro writing and
troubleshooting for m - b a s e d production at the
American Mathematical Society) I recently had to
investigate a line-breaking problem in the bibliogra-
phy macros of the documentstyle amsppt, used with
AMS-m. This is a report on the results of my
investigations. Applications where this information
might be useful include (1) implementation in rn
of SGML-style macros with omitted end tags as an
option, and (2) using the width of a piece of text to
choose between two formatting alternatives.

T h e amsppt bibl iography macros

Although they're less sophisticated than BIB^,
the amsppt bibliography macros are simple to use
and provide a certain degree of style independence
(which makes the . t e x file more portable). They
are designed to allow the individual parts of a

