
Introduction

Turtle Graphics has its roots in the pedagogical
approach of Piaget. It comes down to learning by
metaphors. Computer graphics are demonstrated to
children via a turtle1 moving on the screen. A petal
can be drawn by starting at the origin and moving
north towards ‘up + right’, arriving horizontally;
then leaving southbound and arriving horizontally
at the origin.

Example (Flower borrowed from Papert)
The flower picture is obtained via first creating

a basic petal by moving in quarter circles, and
then combining several of them. The turtle moves
along rotated petals. In METAFONT this is coded
essentially as follows:

petal=origin{up}..

{right}(up+right){down}..

{left}origin;

for k=1 upto 10:

draw petal rotated36k;

endfor

petal is a path; the path data structure in META-
FONT is powerful.

In this short paper I will discuss what has been
used in BLUe’s format system2 as an extension to
manmac in the turtle graphics macros, especially in
the coding of the points of a compass: \N, \E, \S,

1 Knuth already used the turtle idea in his dragon
figures (1996, p. 391). For those interested in turtle
graphics, consult Papert (1980), for example.

2 For more information, see my paper, “BLUe’s
Format — the off-off alternative,” elsewhere in these
proceedings.

222 TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting

Kees van der Laan

Turtle Graphics and TEX — a child can do it

Kees van der Laan
Hunzeweg 57

9893 PB Garnwerd

The Netherlands

Email: cgl@rc.service.rug.nl

Abstract

Papert’s Turtle Graphics in TEX provide the user with a new method for
handling drawings via TEX alone. Being aware of explicit coordinates is replaced
by the body language of drawing using the points of a compass. The approach
is suited for highly systematic figures such as fractals. Example shapes include
spiral, Pythagorean tree, binary tree, and rotated binary tree. The macros are
part of BLUe’s format system and available from CTAN and the NTG’s 4AllTEX
CD-ROM.

Papert’s petals

\W, \NE, \SE, \SW, \NW, along with \ESE, and \WSW.
I will restrict myself to straight lines in TEX.

Examples are included which show what can
be attained by these basic functionalities. Now and
then a METAFONT alternative has been included.
In the Appendix some tree diversions have been
given.

Why?

The need for general and flexible line elements arose
when I faced the problem of how to draw classical
fractals in TEX.3 The very least is the possibility to
draw lines at 45◦, the mid-points of a compass.

3 Inspired by Gurari’s work on TEX and graphics.

Example (Pythagorean tree)

How to do this in TEX? Via LATEX‘s picture
environment? Too clumsy, and cumbersome when
changing the order, for example. Via turtle graph-
ics? Definitely. Via PostScript? A possibility.4 Via
METAFONT? Definitely.

However, why not see how far we can get via
TEX alone?

And what about the relevancy? I’m very
pleased by the spin-off how to typeset binary trees
or charts, even rotated, without the use of Post-
Script. See the Appendix.5

What we need is not the Cartesian picture
environment approach, but the good old pen-plotter
TEXniques, better known in the pedagogical world
as Turtle Graphics.

What is the problem?

TEX’s \hrule and \vrule primitives are gems and
very powerful. It would be nice to have similar
primitives for any direction. In the absence of these
we can use line pieces provided in fonts. However,
the latter suffer from the following drawbacks:

– for a few discrete directions only
– line lengths are discrete too
– line thickness is inflexible

Turtle graphics

The basic idea is that a turtle moves on the screen
with the drawing as its trace. How to implement
this in TEX?

The position of the turtle is maintained in the
dimen variables \x and \y, with TEX’s reference
point left invariant. Moving is parameterized by a
direction and by how far to go in that direction. The
accompanying figure shows the effect of \N1, that
is draw the line (\x, \y) – (\x, \y+1)— in turtle
language the turtle moves up. After completion \y

has been increased by \unitlength.

4 Joseph Romanovsky transcribed my (recursive)
code into PostScript.

5 Or my ‘Publishing with TEX’ user’s guide,
PWT for short.

TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting 223

Turtle Graphics and TEX — a child can do it

Ref. point

(x,y)

The movements — our first steps in the turtle
graphics world— can be achieved by the following
control sequences:

– \N, \E, \S, \W mean draw north, east, south
and west; similarly, \NE, \SE, \SW, and \NW

– \whiteN, \whiteE, \whiteS, \whiteW mean
white-draw north, east, south and west, i.e.,
the turtle just moves6

Example (Spiral)
To get the flavor, a classical picture and its coding
has been provided, which illustrates that we don’t
have to worry about coordinates.

The markup reads essentially as follows:

\unitlength... \k=1;

\loop\E{\the\k}\advance\k+1

\S{\the\k}\advance\k+1

\W{\the\k}\advance\k+1

\N{\the\k}\advance\k+1

\ifnum\k<29 \repeat

More examples have been included in the
graphics chapter of the PWT user’s guide.

The winds and halfwinds

The idea is to compose lines out of elements. I used
squares and/or rectangles as elements, and tiled
them as follows:7 For my own reasons, I have also
chosen to speak of ‘winds’ and ‘halfwinds’ rather
than of the points on a compass.

6 The midpoints can be composed from the four
main compass points in this case.

7 In order to make it visible \linethickness

has been set to 1ex. Experiments with bullets and
LATEX’s line fonts did not yield pleasing results.

The turtle moves 10ex in each direction, to be tiled
by \hlfwndelm in the halfwind directions. What
is essential is how lines leave a mathematical point.
The accompanying model picture has been drawn
as follows:

\let\0\N \let\1\NE \let\2\E \let\3\SE

\let\4\S \let\5\SW \let\6\W \let\7\NW

\linethickness1ex

\setbox\hlfwndelm=\hbox{\vrule

width\the\linethickness

height\the\linethickness depth0pt}

\unitlength10ex

\def\draw{\csname\the\dir\endcsname1}

$$\loop

\ifnum\dir<8{\draw}\advance\dir1

\repeat$$

Pondering aloud

Can we attain compatibility with TEX’s rules prim-
itives? I don’t think so, alas.

Thickness. What is meant by thickness if we
overlap instead of tile? What is the perceived
blackness?

I assumed that tiling with square elements of
size \linethickness×\linethickness— as in the
example figure — would yield the same blackness as
a rule of thickness \linethickness.

Size. Usually the size along the x-axis must be
provided. I prefer to have the real size spec-
ified independently from the orientation of the
line. However, the resulting size is not necessarily
#1×\unitlength.8 In general the result differs at
most by half the atom size because it is composed
of a multiple of the basic element. We have to
correct by

√
2 to compensate for the direction as

we pace along one of the axes. In the example the
required length is 10ex, with as result the tiling of
7 elements of size 1ex.

For large lines one could think of combining
the line elements in LATEX’s line10 font with the

8 To put it another way: the required length
must be a multiple of the atom size.

224 TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting

Kees van der Laan

smaller elements. I refrained for two reasons: first,
LATEX’s NW line element — \char’145— did not
fit exactly in the box; and second, because of the
inflexibility of the thickness of the font entries.

Design specs

With the above in mind, I specified the following for
the microscopic level — the wind and halfwind com-
mands proper — and for the macroscopic level —
the placement within context.

Microscopics. The functionality is to draw a
line of the specified length in the direction as
implied by the control sequence name. The general
specifications read as follows:

– as argument a ‘factor’ is expected, in order to
yield the required length #1×\unitlength9

– \linethickness is a parameter
– after drawing, the position of the turtle is at

the end of each line, the reference point has
been left invariant, and all the boxes have zero
width, height and depth

Extra for the four halfwinds the following:
– \hlfwndelm and \linethickness are parame-

ters
– draw a line of approximately the specified size
– the atoms are tiled diagonally, at the corners

Macroscopics. Placement within context is the
concern of the user. However, because of the zero
dimensions of the boxes it is a nuisance to skip or
kern when using a picture, in order to create the
open space, the niche for the picture. Moreover,
when the picture does not take dimensions we are
in trouble at page breaks. Therefore assistance
is badly needed. The picture environment idea
combined with databases comes to the rescue. The
use of prefab pictures has been simplified in this
way, while there is flexibility via \thispicture to
override the defaults.

Pictures can be stored in BLUe’s format
pic.dat database. Within each database entry
the default bounding box and placement within
context is provided for. Through the use of \ev-

erypicture and/or \thispicture the defaults can
be overridden. This approach complies with the
general principles adopted in BLUe’s format system.

Coding the winds and halfwinds

It must be emphasized that all boxes have zero
dimensions. I also decided to separate getting at

9 The idea is that not only can integer values be
specified but decimal fractions as well.

the (x, y) position from putting whatever there.
This is much in the spirit of the second \point

macro in Knuth (1986, p. 389) and adheres to the
separation of concerns adage.10

In TEX. Familiarity with TEX’s boxes of size zero is
essential: to know the effect of \kern-s and \h/vss-
s inside, and to know the effect of combinations of
these boxes.

Kern-s and stretch-or-shrink-s in boxes of
size zero.

Example (Effects of boxes of size zero)

\newdimen\x \x=4ex

\newdimen\y \y=2ex

.\hbox to 0pt{\kern\x a\hss}.

\kern30ex

.\kern\x a.

\noindent and

.\hbox to0pt{\kern\x\vbox to0pt

{\vss\hbox{a}\kern\y}\hss}.

\kern30ex

.\kern\x\raise\y\hbox{a}.

with result

. a. . a.

and

.
a

. .
a
.

By this mechanism we can move to any point on the
page and put there what we wish. Essential is that
when a box of zero width is set the reference point
is left invariant — it is the same before and after.

Putting it together In vertical mode the
\hbox-es are aligned on the reference point, and
when the heights and depths are zero the \hbox-es
overprint. Moreover, the order of specification is
immaterial. In (restricted) horizontal mode \hbox-
es of width zero overprint and can be given in any
order (Knuth 1986, p. 389). In math mode the
zero-sized boxes overprint. In display math the
invariant reference point is centered horizontally.

Coding After completion the dimension vari-
ables \x and \y have the values of the coordinates
of the end of the line. The coding of a few directions
has been included to convey the idea.

10 In my view, it makes the code more trustworthy
and avoids pitfalls, especially the potential confusion
between the kerns needed to get at (x, y) and the
kerns to position what has to be put at (x, y).

TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting 225

Turtle Graphics and TEX — a child can do it

\newbox\hlfwndelm

\newdimen\auxdim %linesize

\newdimen\linethickness

\linethickness1ex

%

\def\xy#1{%Function: place #1 at x, y

\vbox to0pt{\vss

\hbox to0pt{\kern\x#1\hss}\kern\y}}

%

\def\xytxt#1{%Function: place text #1

% at x, y

\xy{\vbox to0pt{\vss

\hbox to0pt{\strut#1\hss

}\kern0pt}}}

%

\def\N#1{\xy{\kern-.5\linethickness

\vbox to0pt{\vss

\hrule height#1\unitlength

width\linethickness}}%

\advance\y#1\unitlength}

%

\def\S#1{\advance\y-#1\unitlength

{\N{#1}}}

%

\def\SW#1{\auxdim#1\unitlength

\correction%sqrt2

\loop\advance\auxdim-\wd\hlfwndelm

\ifdim\auxdim>-.5\wd\hlfwndelm

\advance\x-\wd\hlfwndelm

\advance\y-\ht\hlfwndelm

\xy{\vbox to0pt{\vss

\copy\hlfwndelm}}%

\repeat}

In METAFONT. The coding to go one step north in
METAFONT reads as follows:

def north=draw z--

hide(y:=y+size)z enddef;

To draw in any direction in METAFONT is implicit,
just provide:

draw <beginpoint>--<endpoint>

There isn’t much need to provide turtle graphics
macros in METAFONT— it is essentially already
there.

Coding the Pythagorean tree

The following illustrates the use of basic turtle
movements for this class of problems. Moreover,
it shows that coding in TEX is completely different
from coding in METAFONT. This goes deeper than
a mere difference in notation.

In TEX. Via the use of the winds and halfwinds
the Pythagorean tree code in TEX reads as follows:

\def\pythtree{\ifnum\level=1

\eerthtyp\fi

\advance\level-1

\multiply\kk23\divide\kk32%

{\leftbranch\draw\pythtree}%

\rightbranch\draw\pythtree}

\def\eerthtyp#1\pythtree{\fi}

%with auxiliaries

\let\0\N \let\1\NE \let\2\E

\let\3\SE\let\4\S \let\5\SW

\let\6\W \let\7\NW

\def\leftbranch{\advance\dir7

\ifnum\dir>7 \advance\dir-8 \fi}

\def\rightbranch{\advance\dir1

\ifnum\dir>7 \advance\dir-8 \fi}

\def\draw{\csname\the\dir\endcsname

{\the\kk}}

%with use

$$\unitlength0.1pt\kk128 %Size

\level5%Order

\N{\the\kk} %Trunk

\pythtree$$

Note that there is no build-up of \fi-s, no use of
either \expandafter or \let (this last has been
used throughout The TEXbook).

In METAFONT. The turtle idea has been used in
going from node to node in METAFONT as follows:11

pair node[];

n=15; %order

l=75; %size of the trunk

node[0]=origin;%position, and

d= 90; %orientation trunk

%Create nodes of leftbound branch

for k=1 upto n:

node[k]=node[k-1]+l*dir d;

d:=d+45;l:=.7l;

endfor

%Draw the tree

for k=n-1 downto 1:

draw node[k+1]--node[k];

addto currentpicture also

currentpicture rotatedaround

(node[k],-90);

endfor

draw node1--node0;

drawdot origin; showit

end

11 But . . . only for the left branch; to draw
the other branches the symmetry operation — ro-

tatedaround— has been used.

226 TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting

Kees van der Laan

Note that there is no recursion. The symmetry
operations of METAFONT allow a concise implemen-
tation, with much faster performance than when
all the leaves would have been walked through one
after another.12

Trinaries

For 45◦ lines I used square elements. Why not use
rectangular elements for 30◦ lines in conformance
with the direction?

Example (Lines at 30◦)

This model has been obtained as follows:

$$\x0pt\y0pt

{\N{10}}{\ESE{10}}{\WSW{10}}$$

%with initializations

\linethickness1ex

\setbox\trielm=\hbox{\vrule

width1.74\linethickness

height\linethickness\relax}

%To account for element in 30 degrees

%direction

\unitlengthy\ht\trielm %default.2pt

\unitlengthx\wd\trielm %default.3482pt

\unitlength\unitlengthy%default.2pt

%and the macros

\def\WSW#1{\auxdim#1\unitlength

\divide\auxdim2

\loop\advance\auxdim-\unitlengthy

\ifdim\auxdim>-.5\unitlengthy

\advance\x-\unitlengthx

\advance\y-\unitlengthy

\xy{\vbox to0pt{\vss

\copy\trielm}}%

\repeat}

%

\def\ESE#1{\auxdim#1\unitlength

\divide\auxdim2

\loop\advance\auxdim-\unitlengthy

\ifdim\auxdim>-.5\unitlengthy

\advance\y-\unitlengthy

\xy{\vbox to0pt{\vss

\copy\trielm}}%

12 In the seventies these kinds of problems had a
reputation of keeping pen-plotters busy. Because
of raster devices we can now do much better, and
METAFONT allows us to prescribe this.

\advance\x\unitlengthx

\repeat}

Example (Trinary tree)

$$\x0pt\y0pt\level6 \kk128

\N{128}\tritree$$

%with trinary tree macro

\def\tritree{\ifnum1=\level

\eertirt\fi

\advance\level-1 \divide\kk2

{\N{\the\kk}\tritree}%

{\ESE{\the\kk}\tritree}%

\WSW{\the\kk}\tritree}

\def\eertirt#1\tritree{\fi}

Remark: The \unitlength-s are, by default, equal
to the sides of the elementary rectangular block.
The size of the tree can be controlled by \kk.

Coding a database element

When inserting a picture in BLUe’s format picture
database, extra layers are added to the picture code
to allow for reuse and to parameterize scalability,
positioning, visibility, with defaults provided, and
to set a picture within a box of the right size, the
bounding box.

How to create a database element has been
treated elsewhere and is not repeated here. How-
ever, I have included an example to convey the
idea.

Example (The database element bintreepic)
The \bintreepic element of the pic.dat database
reads as follows:

\lst\bintreepic{\bgroup

\unitlength.5ex\kk32

\xoffset{-32} \yoffset{-2}%

\xdim{66}\ydim{5}%

\def\eertnib##1\bintree{\fi}

\beginpicture\bintree\endpicture

\egroup\thispicture{}}

%with in the kernel blue.tex

\def\bintree{\S1\ifnum\kk=2

\eertnib\fi

\divide\kk2

{\W{\the\kk}\bintree}%

\E{\the\kk}\bintree}

%and accounting for the leaves

TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting 227

Turtle Graphics and TEX — a child can do it

\def\eertnib#1\bintree{\fi

\global\advance\k1

\whiteS1\xytxt{

\csname\the\k\endcsname}}

Explanation: \bintreepic comes down to an
invocation of \bintree with scaling and positioning
parameters added, assigned with default values.
The defaults can be overridden via the use of
\thispicture{...}. The tokens provided by the
latter are inserted by \beginpicture.

Epilogue

The lines at 45◦ have little compatibility with TEX’s
rules, alas, especially with non-neglible thickness. I
was surprised to realize that TEX’s defaults for rules
are not symmetric around their axes in relation to
the reference point.

Have fun, and all the best.

References

Gurari, Eitan M. TEX and LATEX: Drawing and
Literate Programming . New York: McGraw-Hill,
1994.

Knuth, D.E. The TEXbook. Reading, MA: Addison-
Wesley, 1986.

Papert, S. Mindstorms; Children, Computers, and
Powerful Ideas. New York: Basic Books, 1980.

van der Laan, K. Publishing with TEX: BLUe’s
Selection. Garnwerd, Holland, 1995. Available via
CTAN (info/pwt).

van der Laan, K. “BLUe’s Format — the off-off
alternative.” Elsewhere in these Proceedings.

Appendix: Binary tree and chart

Example (Binary tree)

\pictures\bintreepic

$$\bintreepic$$

with result

Rotated tree. Once we understand turtle graph-
ics, rotating a tree can be done easily by shifting
the meaning of the directions, and adjusting the
positioning of the leaves.13 In the code below,
\bintree and \eertnib come with blue.tex, and
\rotatedbintreepic is included in pic.dat. The
\rotatedbintreepic entry reads as follows:

\lst\rotatedbintreepic{%

\bgroup\unitlength1ex%

\let\W\N \let\exchange\E

\let\E\S \let\S\exchange

\def\1{x}\def\2{y}\def\3{a}

\def\4{b}\def\5{piet}%

\def\6{hans}\def\7{etc.}%

\k0\kk16\xdim{10}\ydim{30}%

\beginpicture\bintree\endpicture

\egroup\thispicture{}}

Example (Rotated tree)

\thispicture{\def\1{cgl}

\def\2{PWT}\def\3{July}

\def\4{1995}\def\5{\dots}

\def\6{}\def\7{}

\yoffset{-16}\ydim{28}}

$$\rotatedbintreepic$$

yields
cgl

PWT

July

1995

. . .

Chart. Through the \bintree macro we can also
obtain charts elegantly.

13 A white lie. The tree is actually mirrored
because I like the leaves to be numbered from the
top. In general we can rotate via PostScript.

228 TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting

Kees van der Laan

Example (Chart – The TEXbook, p. 248, ex. 22.14)

LMB, 1912

MJHB, 1882

JHB, 1838

MDB, 1840

PAME, 1884

EFE, 1845

CLW, 1850

obtained via

%labels in preorder

%(default in \chartpic)

\def\1{LMB, 1912}

\def\2{MJHB, 1882}\def\5{PAME, 1884}

\def\3{JHB, 1838} \def\4{MDB, 1840}

\def\6{EFE, 1845} \def\7{CLW, 1850}

\ekk8

\k0\unitlength2ex\x0pt\y0pt\kk8

\hbox{\modbintree}

%with auxiliaries

\let\Eold\E

\def\E{\global\advance\k1

\xytxt{

\csname\the\k\endcsname}\Eold}

Remarks: An aid in finding the numbers of the
branches is to delete \csname and \endcsname in
\E. The way of traversal at hand is called preorder.

When using \chartpic from pic.dat the texts
along the branches — \def\1{...} etc.— have to
be supplied as tokens within a \thispicture.
And one final note: \modbintree is the adjusted
\bintree macro for this case.

