
METAPOST and patterns

Piotr Bolek
ul. Szkolna 15, 05-180 Pomiechówek, Poland
Phone: (48) 22–785 43 39
P.Bolek@ia.pw.edu.pl

Abstract

In this paper the METAPOST macros for defining and using patterns are pre-
sented. METAPOST is an excellent graphics program which gives the user access
to many PostScript features. But there is no way to access the Pattern Color
Space of PostScript Level 2. The mpattern package is the author’s attempt to give
users of METAPOST a comfortable way of accessing this feature of PostScript.
This package allows the user to define patterns using arbitrary METAPOST code,
modify the pattern transformation matrix and specify vertical and horizontal dis-
placement of adjacent pattern cells. Examples of defining and using patterns are
shown.

Introduction

METAPOST is a very good graphics program. It
takes the best from METAFONT, PostScript and TEX.
From METAFONT, it borrows the declarative pro-
gramming model and a way of describing graphic
objects. It has a very comfortable interface to TEX
and PostScript features. The user can typeset la-
bels using TEX commands and fonts and modify
the graphic state parameters of PostScript, such as
painting color, line thickness and dashing patterns,
as well as the way of line ending and joining. But,
the possibility of defining and using patterns is lack-
ing.

Patterns are very useful and comfortable. Once
defined, they behave like ordinary colors — they are
automatically tiled and clipped on the edges of the
painted area by the PostScript interpreter. They
can be used for easy definition of textures such as
stripes, waves, checkers, hexagons and many more.

Direct implementation of the interface to pat-
terns in METAPOST is impossible without modify-
ing the sources of the METAPOST program itself.
The solution proposed by the author is different.
The main part of the pattern package is written as
METAPOST macros, but the figures in which the
patterns are used must be postprocessed by a simple
perl script. This script is a simple wrapper that calls
the METAPOST program, finds the figures in which
the patterns were used and postprocesses these fig-
ures. The user who wants to define and use patterns
in METAPOST figures must use this wrapper script
(called mpp, which stands for “METAPOST with Pat-

terns”) instead of direct invocation of the META-
POST program.

Patterns in PostScript

There are two types of patterns in PostScript —
uncolored and colored. Uncolored patterns do not
specify any color and act as stencils for painting with
separately specified colors. In uncolored patterns,
operators that specify colors are not allowed. The
colored pattern specifies the colors used for painting
the pattern cell.

Definition of patterns in PostScript consists of
several elements. The pattern is defined as a special
kind of dictionary. (The PostScript data structure
acts as an associative array with elements which may
have different types.) The main element of the pat-
tern dictionary is PaintProc— the arbitrary Post-
Script procedure which is executed to paint a single
pattern cell.

The other important elements of pattern defini-
tion are: pattern bounding box (BBox) which is used
to clip the drawing made by PaintProc and hor-
izontal and vertical spacing between adjacent pat-
tern cells (XStep, YStep). This spacing may differ
from the values implied by the dimensions of the pat-
tern bounding box — the contents of adjacent cells
will then overlap or there will be gaps between cells.
Values of these parameters must be different from
zero — either positive or negative.

The pattern shape can be modified by the ar-
bitrary affine transformation specified during defi-
nition of the pattern — pattern cells can be scaled,
rotated or skewed.

276 TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting



METAPOST and patterns

PostScript patterns and METAPOST

How is METAPOST related to PostScript pattern
color space? The main part of the pattern defini-
tion is the PaintProc procedure. It is an arbitrary
PostScript procedure — and the purpose of META-
POST is to produce arbitrary PostScript procedures.
Therefore, the picture produced by METAPOST can
be used as a definition of the pattern PaintProc.
METAPOST knows the picture bounding box so we
can also use this information if we need it.

METAPOST also can be used to specify the pat-
tern transformation matrix which will be used to
change orientation, size or shape of the basic pat-
tern cell. The METAPOST transform type contains
the same information as the PostScript transforma-
tion matrix. We can specify the transformation of a
pattern cell using comfortable METAPOST (META-
FONT) transformation expressions.

The mpattern package

The mpattern package is the interface to the Post-
Script Pattern Color Space from METAPOST. Us-
ing this package, we can define patterns using arbi-
trary METAPOST commands. We can also specify
the bounding box of a pattern and spacing informa-
tion (XStep, YStep). It is possible to use expressions
of the type transform to specify an arbitrary affine
transformation which will be applied to our pattern.
The patterns defined with this package are colored
patterns.

Once defined, patterns can be used in natural
way — by using the withpattern operator, similar
to withcolor, withpen, etc.

Here is a simple example. Assuming that we
have already defined the path bean, we can define
and use a pattern like that below:

beginpattern(checker);
fill unitsquare scaled 4mm rotated 45;

endpattern;
beginfig(1);
fill bean withpattern checker;
draw bean;

endfig;

The result is shown on figure 1.

Figure 1

As we can see, the pattern is defined with two
macros: beginpattern and endpattern. The for-
mer has one parameter — the name of a pattern.
This name will be used later to identify the pat-
tern when the user wants to use it as a filling for a
closed path. Between these two macros, the user is
allowed to use any valid METAPOST commands.

In our example, the pattern bounding box is
not specified. In such situations, it is calculated by
METAPOST, and in fact is identical with the bound-
ing box of the implicitly defined picture. When the
bounding box should be different from the default,
we can specify it using the patternbbox macro. We
can modify our pattern very easily by specifying the
center of our square as the lower-left vertex of the
bounding box. It will clip the basic cell of our pat-
tern, ignoring everything outside the bounding box.

beginpattern(checker_clip);
fill unitsquare scaled 4mm rotated 45;
z1=llcorner currentpicture;
z2=urcorner currentpicture;
z1’=.5[z1,z2];
patternbbox(z1’,z2);

endpattern;

We can also change the spacing of the pattern with-
out modification of its bounding box. We can spec-
ify the vertical and horizontal spacing separately
(patternxstep and patternystepmacros), or both
of them at once (patternstep).

beginpattern(checker_ovl);
fill unitsquare scaled 4mm rotated 45;
patternxstep(4mm);

endpattern;
beginpattern(checker_gap);

fill unitsquare scaled 4mm rotated 45;
patternstep(6mm,7mm);

endpattern;

These three modifications of our first pattern are
shown on figure 2.

Figure 2

TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting 277



Piotr Bolek

Using the mpattern package we can also spec-
ify arbitrary transformation of pattern cells. Ordi-
nary METAPOST expressions of the type transform
are used for this purpose. The patterntransform
macro the user allows to specify the transformation
of the pattern. The argument of this macro should
contain the type transform. To rotate our example
pattern we can define it as follows:

beginpattern(checker_rot);
fill unitsquare scaled 4mm rotated 45;
patterntransform(identity rotated 22);

endpattern;

Patterns may also be translated, scaled and slanted.
The transformations can be joined in the usual way:

beginpattern(checker_sl);
fill unitsquare scaled 4mm rotated 45;
patterntransform(identity rotated 45

slanted .2);
endpattern;

Examples of transformed patterns are shown on fig-
ure 3.

Figure 3

Now we know all the macros for defining and
using patterns available to users:

• beginpattern, endpattern: the couple of ma-
cros which enclose the definition of basic pat-
tern cell.
• patternbbox: the macro which allows the ex-

plicit specification of the pattern bounding box.
If this macro is not used in the definition of the
pattern, then the bounding box of the whole
picture acting as the pattern cell is used. This
macro may have two parameters of the type
pair, or four numeric parameters.
• patternxstep, patternystep, patternstep:

the macros for specifying spacing of the pattern
cells.
• patterntransform: the macro for changing the

shape of a pattern cell. The argument of this
macros must have the type transform and it

represents the transformation which will be ap-
plied to the pattern. This transformation will
take place after determining the bounding box
and spacing of the pattern. Therefore the real
size and shape of the basic pattern cell can be
different from the ones specified in the pattern
definition. Any valid METAPOST transform ex-
pression can be used as the argument of this
macro.
• patterncolor: the macro used to assign color

to the defined pattern. In the first stage of
processing, the pattern is defined as a color
which is replaced by the pattern itself during
the postprocessing stage. The colors assigned
to patterns are generated automatically, but
we can force the use of concrete colors for this
purpose. The argument of the patterncolor
macro must be a number from range [0, 1] and is
interpreted as gray level (0 — black, 1 — white).
Manual specification of a color tied with pat-
terns requires that this color not be used for
other (ordinary) purposes — because every ob-
ject painted with this color will be painted with
the pattern.

The use of only gray levels in the pattern-
color macro is by the implementation of as-
signment of colors to patterns. The assignment
information is stored in an array indexed by
the colors, which is possible only when the col-
ors are monochrome. This limitation may be
relaxed in the future.
• withpattern: the primary operator which can

be used for drawing shapes filled with earlier
defined patterns. It can be used in a way similar
to withpen or withcolor operators.

Implementation of the package

The mpattern package consists of two parts. The
first is the METAPOST code in which the user in-
terface and working macros are defined. The second
is the simple perl script which invokes METAPOST

and postprocesess its output.
The processing of the patterns takes place in

two steps and is managed by the simple perl script
called mpp. In the first step, the METAPOST pro-
gram is invoked. METAPOST code placed between
beginpattern, endpattern macros is processed as
the figure with a high number — the default is 999,
but if this number is used by the user, then 998
is used, and so on. Problems can arise when the
user uses all the picture numbers from 0 to 999, but
hopely this is a highly improbable situation. In the
endpattern macro, the PostScript code generated
by the pattern picture is read and remembered as

278 TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting



METAPOST and patterns

the PostScript pattern definition in the string vari-
able. When the user uses the withpattern opera-
tor, this code will be placed at the beginning of the
picture in which the pattern is to be used. This is
performed with a special command. Information
about every defined and used pattern is stored as
comments in output files and in the log file. This
information is used in the second step of processing
patterns.

The PostScript code defining the pattern is con-
structed by the macro endpattern. The tiling in-
formation supplied by the user in the patternbbox
and pattern[xy]?step1 macros is converted to a
form suitable for PostScript. PostScript code gen-
erated from an implicitly defined picture is used as
the body of the pattern PaintProc procedure. All
of these elements are placed together into a pat-
tern dictionary and stored in string variables. The
METAPOST transform expression, given as an argu-
ment to patterntransform, is converted to a Post-
Script transformation matrix and used in definition
of the pattern to modify the coordinate system in
which the pattern will be painted.

Every defined pattern is joined with the color
which will be replaced by the pattern in the second
step. The area to be filled with the pattern is filled
by METAPOST with this color. The colors used for
this purpose should not collide with “ordinary” col-
ors used by the user. At the moment, colors which
are to be replaced by patterns are constructed as
k * epsilon * white

where k is the number of the defined pattern, epsilon
is the smallest number in METAPOST, and white is
the white color. Using the macro patterncolor in
the definition of the pattern, the user can explicitly
specify the color (gray level) which will be used with
the defined pattern. Ensuring that pattern colors
will not collide with ordinary colors is, in this case,
left to the user.

Every pattern is remembered in a variable with
the same name as the argument of beginpattern,
so the user should not try to use such a variable for
other purposes.

The second step in processing patterns is per-
formed by a perl script. Pictures in which patterns
are used are found with the help of information
stored in the log file. Then for every such picture,
substitution from colors-to-patterns is performed.
See the small example below.

If the pattern checker was defined first — “his”
color will be (epsilon * white), and the line
0.00002 setgray

1 Regular expression notation is used here.

in the output file will be replaced with
checker setpattern

and definition of the pattern checker will be placed
at the top of this file. If there are several different
patterns used in one picture, then several pattern
definitions will be placed at the top of output file.

Pattern examples

We have already seen several examples of patterns.
These were checkers — the simplest possible ones.
Now let us try to define more interesting and useful
patterns.

Line patterns. The basic patterns are of course
lines. It seems quite easy to define patterns from
lines. But let us have a look at figure 4.

Figure 4

Patterns consisting of vertical and horizontal
lines demonstrate something strange — at regular in-
tervals they have thinner parts. This effect has two
reasons — the pen used to draw lines is circular, and
METAPOST calculates the bounding box of the pat-
tern cell automatically. METAPOST is quite accu-
rate when it calculates the bounding box of the pic-
ture, so we have what we wanted. . .

Knowing the reason for this unwanted effect,
we can deal with it. Two possible solutions of this
problem are shown in the listing below. The first
solution is not to use a rounded pen (lines_s), and
the second is to explicitly define the bounding box
of the pattern in such a way that the rounded ends
of the lines are cut off (lines_ss).
beginpattern(lines_h);

draw origin--10left
withpen pencircle scaled 2;

patternystep(2mm);
endpattern;
beginpattern(lines_v);

draw origin--10up
withpen pencircle scaled 2;

patternxstep(2mm);

TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting 279



Piotr Bolek

endpattern;
beginpattern(lines_s);
draw origin--10up
withpen pensquare scaled 2;

patternxstep(2mm);
patterntransform(identity rotated -45);

endpattern;
beginpattern(lines_ss);
draw origin--10up
withpen pencircle scaled 2;

patternxstep(2mm);
patternbbox(left,10up+right);
patterntransform(identity rotated 45);

endpattern;

Other patterns. Of course we are not limited to
the definition of such simple patterns only. The fol-
lowing represent examples of two patterns and their
transformations.

Figure 5

Definitions of our patterns are really simple, but
they look quite interesting (fig. 5).
def wave_def=
z1=origin; z2=5up+5right; z3=10right;
draw z1{right}..z2..{right}z3;
patternbbox(.25down,10right+5.25up);

enddef;
beginpattern(wave_i);
wave_def;

endpattern;
beginpattern(wave_ii);
wave_def;
patterntransform(identity slanted .9
rotated 35 xscaled 1.5);

endpattern;
def fish_def=
z1=origin; z2=5right+5.up;
path p; p=z1{up}..z2;
draw p;
draw p xscaled -1 shifted (5right+5up);
draw currentpicture xscaled -1;

enddef;
beginpattern(fish_i);

fish_def;
endpattern;
beginpattern(fish_ii);

fish_def;
patterntransform(identity slanted .9
rotated 67 xscaled 1.5);

endpattern;

Interesting patterns can be defined using a for loop.
Below we define a path which is later rotated, and as
a result, we obtain quite interesting looking textures.

Figure 6

beginpattern(p_a);
z1=(0,0); z2=5up;
path p;
p=z1{right rotated -10}..{up}z2;
for i=1 upto 4:

draw p rotated (i*360/4);
endfor;
patternbbox(-y2,-y2,y2,y2);

endpattern;
beginpattern(p_b);

z1=(0,0); z2=5up;
path p;
p=z1{left}..z1+(-2,3)..{dir 65}z2;
for i=1 upto 4:

draw p rotated (i*360/4);
endfor;
patternbbox(-y2,-y2,y2,y2);

endpattern;

Colored patterns. All previously defined patterns
were black and white; but we can of course de-
fine patterns with more colors. Here are three ex-
amples (fig. 7). (Editor’s note: Figures 7 and 8
may be viewed in color at http://www.tug.org/
TUGboat/Articles/tb60/bolek-cfigs.pdf.) Be-
cause the definitions of these patterns are not as
simple as those above, it may be interesting to see
the shape of the basic pattern cells (fig. 8). The code
defining these patterns is contained in Appenix A.

Of course we can use fonts in our patterns. Quite
interesting examples of patterns in which texts was
used are shown in fig. 9.

280 TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting



METAPOST and patterns

Figure 7

Figure 8

But using text in patterns may be dangerous.
The PostScript created by processing the TEX doc-
ument including a figure with “text” patterns can
cause errors in PostScript devices or interpreters.
The problems occurs only when the fonts used in the
patterns are bitmapped fonts. When we use Type 1
fonts, the file is processed without errors.

Figure 9

Figure 10

It seems that the dvips interface to PK fonts is not
safe enough when used in patterns. So if we are
going to use text in patterns, we should use only
Type 1 fonts. Times New Roman is used in fig. 9.

The final example (fig. 10) is an illustration
from a chapter about map coloring in book about
combinatorics.

TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting 281



Piotr Bolek

A Appendix

The definitions of patterns used in figure 7 are shown below.
beginpattern(Honey);

path p;
alpha:=360/6;
for i=0 upto 5:

z[i]=(3mm*up) rotated (i*alpha-30);
endfor;
p=z0--z1--z2--z3--z4--z5--cycle;
z6=z5+z0-z1;
z1b=(x2,y3); z2b=(x6,y0);
patternbbox(z1b,z2b);
fill z1b--(x1b,y2b)--z2b--(x2b,y1b)--cycle withcolor ((255, 193, 37)/255);
drawoptions(withpen pencircle scaled 4 withcolor (red+green+.5blue));
draw p;
draw z5--z6;
draw (z1--z2--z3) shifted (z6-z2);
drawoptions();
draw p;
draw z5--z6;
draw (z1--z2--z3) shifted (z6-z2);

endpattern;

beginpattern(Brick);
u:=3mm;
fill unitsquare scaled 2u withcolor (red+.4green+.4blue);
draw unitsquare xscaled 2u yscaled u withcolor white;
draw (u,u)--(u,2u) withcolor white;
draw (0,2u)--(2u,2u) withcolor white;
patternbbox(origin,(2u,2u));

endpattern;

beginpattern(Floor);
u:=2mm;
fill unitsquare xscaled 6u yscaled 2u withcolor ((238, 154, 73)/255);
drawoptions(withpen pencircle scaled 1 withcolor ((255, 241, 210)/255));
draw origin--(2u,2u)--(4u,0);
draw (4u,2u)--(6u,0);
draw (2u,0)--(3u,u);
draw (5u,u)--(6u,2u);
draw (-u,u)--(u,3u);
draw (5u,3u)--(7u,u);
patternbbox(origin,(6u,2u));

endpattern;

Patterns with texts from figure 9
beginpattern(txt_i);

picture l;
l=thelabel(btex\font\q=ptmr8r\q MetaPost etex, origin);
draw l;
z1=llcorner currentpicture;
z2=urcorner currentpicture;
draw l shifted ((y2-y1)*up+.5(x2-x1)*right);
draw l shifted ((y2-y1)*up+.5(x2-x1)*left);

282 TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting



METAPOST and patterns

patternbbox(z1,(x2,2[y1,y2]));
endpattern;

beginpattern(txt_ii);
picture l;
l=thelabel(btex\font\q=ptmri8r\q MetaPost etex, origin);
draw l;
z1=llcorner currentpicture;
z2=urcorner currentpicture;
draw l shifted ((y2-y1)*up+.2(x2-x1)*right);
draw l shifted ((y2-y1)*up+.8(x2-x1)*left);
patternbbox(z1,(x2,2[y1,y2]));
patterntransform(identity rotated 60);

endpattern;

TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting 283


