
Programming with PerlTEX

Andrew Mertz, William Slough
Department of Mathematics and Computer Science
Eastern Illinois University
Charleston, IL 61920
aemertz (at) eiu dot edu, waslough (at) eiu dot edu

Abstract

PerlTEX couples two well-known worlds — the Perl programming language and
the LATEX typesetting system. The resulting system provides users with a way to
augment LATEX macros with Perl code, thereby adding programming capabilities
to LATEX that would otherwise be difficult to express. In this paper, we illus-
trate the use of PerlTEX with a variety of examples and explain the associated
Perl code. Although Perl may perhaps be best known for its string manipula-
tion capabilities, we demonstrate how PerlTEX indirectly provides support for
“programming” graphics through the use of additional packages such as TikZ.

1 Introduction

The typesetting capabilities of TEX and LATEX are
well known. Each has the ability to define macros,
adding significant flexibility and convenience. How-
ever, to achieve some effects in TEX requires a level
of expertise many users lack.

Perl [8] is a programming language with par-
ticular strengths in string processing and scripting.
Since it borrows concepts from other languages such
as C and sed, its syntax is likely to be reasonably
familiar to many.

PerlTEX [4] provides a way to incorporate the
expressiveness of Perl directly within a LATEX docu-
ment. In doing so, the computing capabilities of Perl
are coupled with the document preparation abili-
ties present in LATEX. Combining these two systems
has an important outcome: for those who already
know or are willing to learn some of Perl’s rudi-
ments, a number of typesetting tasks become more
convenient to express.

2 A first example

In Chapter 20 of The TEXbook [3], a TEX macro
which generates the first N prime numbers is de-
scribed, where N is a specified parameter of the
macro. This discussion and macro earn Knuth’s
double dangerous-bend symbols, a warning to read-
ers that esoteric topics are under discussion.

It is probably fair to say that the design of such
a macro using the primitives of TEX is a task best
left to experts. A simpler approach uses PerlTEX.
Figure 1 shows the details.

To use this command, we request the prime
numbers within a specified interval. For example,

\perlnewcommand{\listPrimes}[2] {
use Math::Prime::XS "primes";
return join(" ", primes($_[0], $_[1]));

}

Figure 1: Definition of a command, \listPrimes, to
generate prime numbers. The two arguments of this
command specify the desired range of values to be
generated.

\listPrimes{10}{30}

generates the typeset sequence
11 13 17 19 23 29

consisting of the prime numbers between 10 and 30.
Let’s take a closer look at how this is accom-

plished. To begin, we use \perlnewcommand, the
PerlTEX analog of the \newcommand of LATEX. We
thus define a new command, \listPrimes, with two
arguments.

In contrast to the \newcommand of LATEX, Perl
code is placed within the definition portion of a
\perlnewcommand. For the current example,

use Math::Prime::XS "primes";

imports a Perl module which contains a function,
named primes, which is perfectly suited to the task
at hand. Given a pair of values which specify the de-
sired range, this function returns a list of the primes
in that range.

The arguments of \listPrimes are accessed
with the Perl notation $_[0] and $_[1]. Thus,

primes($_[0], $_[1])

yields a list of the desired primes. To complete the
definition of \listPrimes, a single string must be
created from the collection of primes just obtained.

354 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Programming with PerlTEX

This is easily achieved with Perl’s join. Here, we
use a single space to separate adjacent primes.

In this example, the use of an existing Perl func-
tion, primes, avoids “reinventing the wheel”. Since
there are many such functions available, this is one
direct benefit of PerlTEX. A wealth of Perl functions
can be located by consulting CPAN, the comprehen-
sive Perl archive network, found at www.cpan.org.

3 Variations on a theme

Rather than produce one sequence of primes, as in
our first example, now suppose a tabular array of
primes is desired. We will define a new command,
\tablePrimes, with three arguments: the first two
specify the desired range of primes, as before, and
the third argument indicates the number of columns
to be used. For example, the command

\tablePrimes{1}{20}{3}

will produce a table consisting of the primes between
1 and 20, typeset in three columns.

We will show two different definitions for this
command. The first solution uses a direct approach,
illustrating how the looping and conditional control
structures of Perl can be used to generate the re-
quired LATEX code. In the second solution the power
of regular expressions is used to achieve the same re-
sult, avoiding the need for explicit looping and test-
ing.

Before taking up the Perl details, let’s consider
the desired LATEX code to be generated. For the
three-column example above, the following needs to
be generated:

\begin{tabular}{*{3}{r}}
2 & 3 & 5\\
7 & 11 & 13\\
17 & 19 &
\end{tabular}

Of course, this is just a tabular environment consist-
ing of the primes to appear within the table. It is
helpful to think of this as one string, subdivided into
three parts: the beginning of the environment, the
environment content, and the end of the environ-
ment. The first definition of \tablePrimes, shown
in Figure 2, reflects this view.

Consider the final return statement in this def-
inition. Using Perl’s concatenation or dot operator,
three string components are formed to yield the de-
sired tabular environment. In the first component,
$_[2] is used to obtain the value of the third pa-
rameter, the number of columns. Each backslash
which is to appear in the generated LATEX code must
also be escaped in Perl to avoid its usual meaning.
So, for example, \\begin appears in order to ob-

\perlnewcommand{\tablePrimes}[3] {
use Math::Prime::XS "primes";
my $count = 0;
my $primes = "";
foreach my $item (primes($_[0], $_[1])) {
$primes .= $item;
$count++;
if ($count == $_[2]) {
$primes .= "\\\\ \n";
$count = 0;

}
else {
$primes .= " & ";

}
}
return "\\begin{tabular}{*{$_[2]}{r}}\n" .

$primes . "\n" .
"\\end{tabular} \n";

}

Figure 2: Definition of a command, \tablePrimes, to
generate a table of prime numbers.

tain \begin. Without escaping the backslash, Perl
would interpret \b as a backspace. The use of \n in
this return statement ensures that each component
begins on a new line.

At this point in the definition, the Perl variable
$primes contains the string of all primes needed for
the table, with & column separators and \\ row sep-
arators inserted as appropriate. Everything in the
definition prior to the return statement is present
to generate this string.

This portion of the definition is straightforward,
though a few comments might be helpful. The key-
word my is used when Perl variables are introduced
to indicate they are local, which is generally a good
idea to prevent unintended interactions.

The variable $primes begins as an empty string
and grows to include all of the needed values to
appear in the table. Perl’s compound operator .=
is used to append a new value to this string. We
use the foreach construct to iterate over all of the
primes generated, appending each in turn to the
$primes string. Column or row separators are ap-
pended to this string by keeping count of which col-
umn has just been added to the string. As before,
some care is needed regarding the escape character.
For example, \\\\ is used to generate \\.

The second definition for \tablePrimes takes a
different viewpoint of the generation of $strings. A
two-step process is used to generate the value for the
tabular environment. As a first step, a &-separated
string of primes is constructed:

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 355

Andrew Mertz, William Slough

my $primes = join("&",
primes($_[0], $_[1]));

This generates all primes, incorrectly assuming that
the tabular will consist of one very long row. The
second step corrects this assumption by replacing
every kth column separator with a row separator.
This can be achieved using regular expressions:

$primes =~ s/((\d+&){$k}\d+)&/
$1\\\\ \n/g;

Though this might be viewed as somewhat cryptic,
the use of regular expressions is one of the widely
quoted strengths of Perl and can be used, as here,
to concisely describe a pattern substitution. Putting
these ideas together yields the definition shown in
Figure 3.

\perlnewcommand{\tablePrimes}[3] {
use Math::Prime::XS "primes";

Number of ampersands needed per line
my $k = $_[2] - 1;

Build a string of &-separated primes
my $primes = join("&",

primes($_[0], $_[1]));

Insert newlines for each row
$primes =~ s/((\d+&){$k}\d+)&/$1\\\\ \n/g;

Put the pieces together
return "\\begin{tabular}{*{$_[2]}{r}}\n" .

$primes . "\n" .
"\\end{tabular} \n";

}

Figure 3: Alternate definition of \tablePrimes. A
regular expression is used to subdivide the primes into
rows.

4 Layout and processing

The layout of a LATEX document which uses PerlTEX
is straightforward. Within the preamble

\usepackage{perltex}

loads the PerlTEX package. Also in the preamble,
one or more PerlTEX commands are defined with
\perlnewcommand. Within the document environ-
ment, the PerlTEX commands which were defined
can be utilized. Figure 4 shows an example.

Processing a PerlTEX source file requires the
services of both Perl and TEX. This is accomplished
using a script provided with PerlTEX. For example,
the command

perltex foo.tex

\documentclass{article}
...
\usepackage{perltex}
...

\perlnewcommand{\tablePrimes}[3]{
definition

}

\begin{document}
...
\tablePrimes{1}{20}{3}
...
\tablePrimes{1}{20}{4}
...

\end{document}

Figure 4: Sample layout of a LATEX document
intended for PerlTEX. The definition of \tablePrimes

is omitted here.

processes the source file foo.tex. As shown in Fig-
ure 5, this initiates the processing by creating a pair
of communicating processes, one each for TEX and
Perl, ultimately creating the output file.

foo.tex PerlTEX pdfTEX

Perl

foo.pdf

Figure 5: Processing a source file with PerlTEX.

By default, PerlTEX causes the Perl processing
to use a secure sandbox, insulating the user from
potentially dangerous actions, such as removal of
directories or other undesirable system-related ac-
tions. If this is not desired, the command

perltex --nosafe foo.tex

disables the sandbox. Disabling the sandbox is help-
ful when importing Perl modules, accessing files or
the network, and in many other cases.

Introducing Perl code provides new opportuni-
ties for errors. To assist with debugging, PerlTEX
creates a log file with the suffix lgpl which contains
all of the Perl and LATEX code generated during pro-
cessing. Any error messages returned by the Perl
interpreter also appear in this file.

356 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Programming with PerlTEX

5 Graphical output

One appealing feature of PerlTEX is its ability to
interact with other packages. To see an example of
this, consider the triangular array of binomial coef-
ficients — more popularly known as Pascal’s trian-
gle. If a fixed modulus m is selected, each entry
of the triangle can be reduced, modulo m. Each of
the m possible remainder values can be assigned a
color, providing a way to visualize the coefficients as
a multi-colored graphic. A number of very attractive
diagrams of this sort with varying moduli appear in
Chaos and Fractals [5]. In this section, we use TikZ
[6] to take care of the graphical aspects, while using
PerlTEX to generate the numerical values of Pascal’s
triangle.

As a starting point, Figure 6 defines a PerlTEX
command, \pascalMatrix, which generates a tab-
ular array of binomial coefficients. Its single argu-
ment specifies the size of the triangle. (For an ar-
gument n, the rows of the array are numbered 0
through n.) For example, \pascalMatrix{5} yields
the triangular array:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

As in previous examples, the return statement
in this definition is responsible for creating the en-
tire tabular environment. In this case, the variable
$tabularRows contains all of the rows needed for
Pascal’s triangle.

Each iteration of the outer loop appends one
complete row to tabularRows. The inner loop is re-
sponsible for generating row r+1 given the contents
of row r, using a well-known identity for binomial
coefficients:

(
r+1

c

)
=

(
r

c−1

)
+

(
r
c

)
.

Perl supports the syntax of the familiar for
loop of the C programming language, thus allow-
ing a common looping mechanism to be used within
TEX.

Figure 7 gives a graphical view of Pascal’s tri-
angle. In this diagram, a modulus of two has been
used, giving two possible remainders, shown as white
and black. This diagram can be specified using TikZ
as a sequence of \fill statements, as shown in Fig-
ure 8. Each \fill statement is responsible for pro-
ducing one small square of the diagram and specifies
its color, position, and size.

Figure 9 is a revision of \pascalMatrix. Using
this definition, the necessary \fill statements to
generate a graphical form of Pascal’s triangle can

\perlnewcommand{\pascalMatrix}[1] {
my $tabularRows = "";
my @row = (1);
for (my $r = 0; $r <= $_[0]; $r++) {
Output the current row
$tabularRows .= join ("&", @row) .

" \\\\\n";
Generate the next row
my @nextRow = (1);
for (my $c = 1; $c <= $r; $c++) {
push @nextRow,

@row[$c - 1] + @row[$c];
}
push @nextRow, 1;
@row = @nextRow;

}
return
"\\begin{tabular}{*{$_[0]}{c}c}\n" .
$tabularRows .
"\\end{tabular}\n";

}

Figure 6: Generating entries of Pascal’s triangle.

Figure 7: Graphical view of Pascal’s triangle.

\begin{tikzpicture}[scale=0.5]
\fill[black] (0,0) rectangle +(1,1);
\fill[black] (0,-1) rectangle +(1,1);
\fill[black] (1,-1) rectangle +(1,1);
\fill[black] (0,-2) rectangle +(1,1);
\fill[white] (1,-2) rectangle +(1,1);
\fill[black] (2,-2) rectangle +(1,1);
\fill[black] (0,-3) rectangle +(1,1);
\fill[black] (1,-3) rectangle +(1,1);
\fill[black] (2,-3) rectangle +(1,1);
\fill[black] (3,-3) rectangle +(1,1);

\end{tikzpicture}

Figure 8: TikZ code for four rows of Pascal’s triangle.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 357

Andrew Mertz, William Slough

\perlnewcommand{\pascalGraphic}[1]{
my $result = "";
my @row = (1);
my @colors = ("white", "black");
for (my $r = 0; $r <= $_[0]; $r++) {
Output the current row
for (my $c = 0; $c <= $r; $c++) {
$result .= sprintf("\\fill[%s] (%d, %d) rectangle +(1, 1);\n",

$colors[$row[$c]], $c, -$r);
}
Generate the next row
my @nextRow = (1);
for (my $c = 1; $c <= $r; $c++) {
push @nextRow, (@row[$c - 1] + @row[$c]) % 2;

}
push @nextRow, 1;
@row = @nextRow;

}
return $result;

}

Figure 9: Generating a graphical view of Pascal’s triangle, modulo two.

TimeCDT,TemperatureF,Dew PointF,Humidity,Sea Level PressureIn,VisibilityMPH,
Wind Direction,Wind SpeedMPH

12:53 AM,73.0,70.0,90,30.05,10.0,SSW,4.6

1:53 AM,73.0,69.1,87,30.04,9.0,SW,3.5

2:53 AM,72.0,68.0,87,30.04,10.0,West,3.5

additional lines omitted
<!-- 0.122:1 -->

Figure 10: A brief excerpt of weather information obtained from the Weather Underground.

be obtained. For example,

\begin{tikzpicture}[scale=0.1]
\pascalGraphic{31}

\end{tikzpicture}

generates the 32-row graphic of Figure 7.
As might be expected, the definitions for the

two Pascal triangle commands are very similar. In
the graphical version, a single string consisting of the
sequence of \fill statements is built up in $result.
Each of these \fill statements is obtained by a
formatted print statement, appended to $result.
Also, since values within any one row of the trian-
gle are stored modulo two, Perl’s % operator is used.
Both sprintf and the % operator are language fea-
tures shared with C.

6 LATEX documents and the Internet

The LWP∗ Perl library [1] can be used to access data
on the web. With the assistance of PerlTEX, this

∗ LWP is an acronym for ‘Library for WWW in Perl’.

allows information from web sites to be retrieved
and incorporated within a LATEX document.

For example, suppose we wish to access weather
data and display it in either tabular or graphical
form within a LATEX document. This type of pro-
cessing is made possible by LWP and Perl’s support
for regular expressions.

The Weather Underground† is one of many sites
which provides access to historical weather data.
Given an airport code, year, month, and day, it is
possible to retrieve many details about the weather
recorded at the requested location and date. Fig-
ure 10 shows an excerpt of the results of a web re-
quest for June 28, 2007, at the Coles County Memo-
rial Airport, with airport code KMTO. What is im-
portant to know about this request is that

KMTO/2007/6/28

appears as a substring of a lengthy URL. Figure 11
shows how this raw weather data is to be formatted
as a tabular.

† www.wunderground.com

358 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Programming with PerlTEX

Time Temp Dew Point Humidity SL Pressure Vis Wind Dir Wind Speed
12:53 AM 73.0 70.0 90 30.05 10.0 SSW 4.6
1:53 AM 73.0 69.1 87 30.04 9.0 SW 3.5
2:53 AM 72.0 68.0 87 30.04 10.0 West 3.5

Figure 11: An excerpt of formatted weather data.

\perlnewcommand{\getWeather}[4] {
use LWP::Simple;

Form the URL from the airport code, year, month, and day
$id = join"/", @_;
$URL = A URL incorporating $id;

If we have already looked up this day, do nothing
return "" if exists $data{$id};

Otherwise fetch and store the data
$data{$id} = get$URL;

Return nothing as this command only fetches data but
does not cause anything to appear in the document.
return "";

}

Figure 12: A command to fetch the weather data from a web site. The four parameters specify airport code,
year, month, and day.

The data is retrieved and formatted with two
PerlTEX commands: one retrieves the data from the
Web site, the other one performs some text manip-
ulations and formats the data as a tabular. A va-
riety of text substitutions are needed, for example,
to account for HTML tags which are present in the
retrieved data.

The first of these commands, \getWeather, is
shown in Figure 12. This command introduces vari-
ables $id and $data, but does not declare them to
be local, thus making them accessible from the sec-
ond command, \formatWeather. The command

\getWeather{KMTO}{2007}{6}{28}

creates the appropriate URL, accesses the web site
to retrieve the data, and saves the result in the Perl
hash variable $data. This command differs from
the others presented in that the return value is of
no interest: rather, it is the side-effect of storing the
weather data in $data that is desired.

Figure 13 shows the details of \formatWeather.
Weather data is obtained from the web site by in-
voking latex_getWeather, the Perl function cre-
ated from the definition of \getWeather. At this
point, various textual substitutions are made to the
data. For example, the comma-separated values
are adjusted to become ampersand-separated val-

ues, in anticipation of inclusion in a tabular environ-
ment. This command illustrates some of the string-
processing conveniences of Perl.

In this example, information was retrieved from
the Internet. However, data can be obtained from
files, databases, and other sources just as easily.

7 Graphical animations

The animate package [2] provides a convenient way
to create PDF files with animated content consisting
of a sequence of frames, optionally controlled with
VCR-style buttons. We provide a brief example of
the use of this package with a special focus on the
role PerlTEX can play.

One of the environments provided by this pack-
age, animateinline, creates animations from the
typeset material within its body. This might con-
sist of a sequence of TikZ commands which generate
frames of the animation.

In many cases, each frame of an animation can
be viewed under the control of some parameter t.
For example, an animation of a Bézier curve can be
constructed as a sequence of frames controlled by t,
where t varies from 0 to 1.

For the present example, assume there is a com-
mand, \bcurve, with a single parameter t which
yields a graphical image of a single frame. To achieve

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 359

Andrew Mertz, William Slough

\perlnewcommand{\formatWeather}[4] {
Ensure the appropriate weather data has been retrieved
latex_getWeather($_[0], $_[1], $_[2], $_[3]);
$rows = $data{$id};

$rows =~ s/(.*\n){2}//; # Strip the first two lines

Add the headings
$rows = "Time,Temp,Dew Point,Humidity,SL Pressure,Vis," .

"Wind Dir,Wind Speed\n" . $rows;
$rows =~ tr/,/&/; # Commas become alignment tabs
$rows =~ s/\n/\\\\\n/g; # Newlines become the end of a row
$rows =~ s/<.*>//g; # Remove any HTML tags

Return the table
return "\\begin{tabular}{...}\n $rows \\end{tabular}\n";

}

Figure 13: A command to tabulate the weather data obtained from a web site. Notice how the PerlTEX
command \getWeather is invoked.

a smooth animation, what is needed is a sequence of
these frames, with closely spaced values of t. For the
animateinline environment, a sequence such as:

\bcurve{0}%
\newframe%
\bcurve{0.02}%
\newframe%
etc.

is needed to generate the animation.
This sequence can be generated easily with a

PerlTEX command. In doing so, we cover a wide
class of animations, namely, those that can be de-
scribed as a sequence of frames controlled by a single
parameter.

Figure 14 shows the details of a command which
generates a sequence of frames. This command takes
four arguments: the name of the command which
generates a single frame, the starting and ending
values of t, and the total number of frames desired.
For example,

\animationLoop{bcurve}{0}{1}{51}

generates the sequence of 51 frames \bcurve{0.0},
\bcurve{0.02}, . . . , \bcurve{1.0}.

8 Demonstrating algorithms

One way to understand an algorithm is to trace its
actions, maintaining a history of the values being
computed and stored. For some algorithms, this
history can be compactly displayed with a tabular
environment.

Using the beamer package [7], this type of tab-
ular information can be incrementally revealed by

inserting \pause commands at selected locations.
In the context of demonstrating an algorithm, such
pauses can be used to show the effect of one iteration
of a loop.

To illustrate, consider Euclid’s algorithm for
computing the greatest common divisor. At the
heart of this algorithm is a loop which repeats the
following three actions:

r = x % y; x = y; y = r;

The history for this algorithm is a tabular array
with three columns, one for each of the three vari-
ables. A partial history might reveal the following
table, “at rest” at a \pause.

x y r
120 70 50
70 50 20
50 20

Picking up after the \pause, the history grows by
an amount equal to one iteration of the loop:

x y r
120 70 50
70 50 20
50 20 10
20 10

As shown in Figure 15, these types of tabular
environments can be generated with a PerlTEX com-
mand. Since the values in the tabular are being com-
puted by Euclid’s algorithm, it is easy to generate
a wide variety of example histories — and to have
confidence that the values in the table are correct!

360 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Programming with PerlTEX

\perlnewcommand{\animationLoop}[4]{
my $result = "";
my $delta = ($_[2] - $_[1]) / ($_[3] - 1.0);
my $x = $_[1];
for (my $count = 1; $count < $_[3]; $count++) {
$result .= "\\" . $_[0] . "{$x}%\n" .

"\\newframe%\n";
$x += $delta;

}
return $result . "\\" . $_[0] . "{$_[2]}%\n";

}

Figure 14: A command to generate a sequence of frames in a graphical animation.

\perlnewcommand{\euclidAlgorithm}[2]{
my $x = $_[0];
my $y = $_[1];
my $result = "$x & $y & \\pause ";
while ($y != 0) {
my $r = $x % $y;
$result .= "$r \\\\ \\hline \\pause \n";
$x = $y;
$y = $r;
$result .= "$x & $y & ";
$result .= "\\pause " if $y != 0;

}
return
"\\begin{tabular}{c|c|c} \\hline \n" .
"\$x\$ & \$y\$ & \$x \\bmod y\$\\\\ \\hline \\pause \n" .
$result . "\\\\ \\hline \n" .
"\\end{tabular}";

}

Figure 15: A PerlTEX command to generate a tabular history for Euclid’s algorithm.

9 Shuffling an enumerated list

So far, all of the examples presented have focused on
the ability to define new commands with PerlTEX.
However, PerlTEX also provides a mechanism to de-
fine a new environment: \perlnewenvironment. A
command of the form

\perlnewenvironment{foo}{start}{finish}

defines a new environment, named foo. PerlTEX
replaces a subsequent \begin{foo} with the start
text and an \end{foo} with the finish text.

To illustrate, suppose it is desired to typeset a
shuffled enumerated list. In principle, each time the
source text is processed, a different ordering of the
list items could result. To accomplish this, we intro-
duce a new environment, shuffle, and a new com-
mand, \shuffleItem. For example, Figure 16 illus-
trates how this environment can be used to typeset
an enumerated list of the four given items, arranged
in an arbitrary order.

\begin{shuffle}
\shuffleItem{TUG 2007}
\shuffleItem{SDSU}
\shuffleItem{San Diego}
\shuffleItem{California}

\end{shuffle}

Figure 16: An example of the use of the shuffle

environment.

To achieve this behavior, consider the action
required for each item in the shuffle environment.
As shown in Figure 17, each item which appears gets
appended to a variable, @items, which maintains a
list of all items encountered thus far.

The bulk of the work takes place at the conclu-
sion of the shuffle environment. The items that
have been accumulating are now rearranged and an
enumerated list is constructed from this permuted
list. Figure 18 provides the Perl details. The vari-
able @items is undefined as a final step, since a

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 361

Andrew Mertz, William Slough

\perlnewcommand{\shuffleItem}[1]{
push @items, $_[0];
return "";

}

Figure 17: A PerlTEX command which stores one
item of a shuffle environment.

subsequent shuffle environment must start with
a “clean slate” of items. Permuting the list of items
is a simple operation, since there is a Perl library
module well-suited to this task.

Although this implementation of shuffled enu-
merated lists does not allow for nested shuffled lists,
it does nevertheless provide an illustration of the
ability to define new environments within PerlTEX.

\perlnewenvironment{shuffle}
{return "\\begin{enumerate}\n"}
{
use List::Util "shuffle";

@items = shuffle(@items);

my $result = " \\item ".
join("\n \\item ", @items).
"\n\\end{enumerate}";

undef @items;
return $result;

}

Figure 18: A PerlTEX command which stores an
item of a shuffle environment.

10 Summary

TEX provides powerful ways to format text and to
perform general-purpose computations. For many
users, however, the techniques required to access the
computational features of TEX are cumbersome. By
providing a bridge between TEX and Perl, PerlTEX
makes these computations more accessible.

Perl’s widely acknowledged strengths, including
extensive libraries, support for regular expressions,
a rich collection of string primitives, and familiar
control structures, make PerlTEX a natural candi-
date for the LATEX user seeking finer control over
typesetting tasks.

References

[1] Sean Burke. Perl & LWP. O’Reilly, 2002.
[2] Alexander Grahn. The animate package.

http://www.ctan.org/tex-archive/macros/
latex/contrib/animate.

[3] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1986.

[4] Scott Pakin. PerlTEX: Defining LATEX macros
using Perl. TUGboat, 25(2):150–159, 2004.

[5] Heinz-Otto Peitgen, Hartmut Jürgens,
and Dietmar Saupe. Chaos and Fractals.
Springer-Verlag, 2004.

[6] Till Tantau. TikZ and PGF manual.
http://sourceforge.net/projects/pgf/.

[7] Till Tantau. User’s Guide to the Beamer Class.
http://latex-beamer.sourceforge.net.

[8] Larry Wall, Tom Christiansen, and Jon
Orwant. Programming Perl, Third Edition.
O’Reilly, 2000.

362 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

