
90 TUGboat, Volume 31 (2010), No. 1

Glisterings
Peter Wilson

His eye, which scornfully glisters like fire,
Shows his hot courage and his high desire.

Venus and Adonis, William Shakespeare

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

Words are wise men’s counters, they do but
reckon with them, but they are the money
of fools.

Leviathan, Thomas Hobbes

1 Counting
1.1 Number of words
Some publications put word limits on manuscripts,
and the question often arises as what is the (best)
way to count them. This is answered in detail in
the FAQ [1] but my answer is to simply count the
number of words on one page of your manuscript and
multiply by the number of pages. This is essentially
the technique used by book designers and publishers
when confronted with a manuscript in the process
called casting off (see, for example, [3, Chap. 8]).
The publishers are not particularly interested in the
exact number of words but are very much interested
in the number of pages in the final production.

If you are writing a thesis the powers-that-be
may specify a word limit, but it is probably safe to
assume that they will not actually check the num-
ber of words themselves, unless there is an obvi-
ous mismatch between your number and the size of
the thesis. In any event, what counts as a ‘word’?
Is ‘powers-that-be’ one word or three? How many
‘words’ are the equivalent of a table or a figure?
If different sized fonts will be used, are all ‘words’
equal? What about footnotes, mathematical equa-
tions, verse—how many ‘words’ should be allocated
to them?

1.2 Lua
By the time you read this LuaTEX should be avail-
able, and perhaps you have used it. At the time of
writing it is still being developed and I have not tried
it. However, assuming that Lua [2] will be available
on all TEX platforms, I thought that I would try and
use it for its own sake.

I have been fortunate in being able to use lead
type and a hand operated press, much as Gutenberg
did in the 15th century. Unlike digital typesetting
where you can have an unlimited number of charac-
ters of any particular kind, the number of available
characters is strictly limited— if the font you are us-
ing has only 23 ‘e’ sorts (a sort is a single piece of
lead type), then in one go you can only set text that
has no more than 23 ‘e’ characters. It is therefore
important to know how many of each sort is required
to set a page of text. For example, I wanted to print
a 16th century poem—only 2 verses on one page—
in a particular font but I couldn’t do so as I was
one ‘h’ short (there were a lot of thee, thou, thine,
. . . eth, etc., words compared to modern English). I
work on a Linux system which provides programs for
counting the number of words and the total number
of characters in a piece of text; presumably other
systems provide the equivalent. But what I wanted
was a program to count the numbers of the individ-
ual characters— the number of ‘A’ characters, the
number of ‘a’ characters, and so on.

I managed to extend a Lua program that would
do this for me. Here it is, in a file that is called
gwc.lua:

#!/usr/local/bin/lua5.1
-- gwc.lua Lua program to count characters, etc
-- (see Lua Manual p.198)
-- call as: gwc.lua file

local BUFSIZE = 2^13 -- 8k
local f = io.input(arg[1]) -- open input file
local cc = 0 -- count of chars
local lc = 0 -- count of lines
local wc = 0 -- count of words
local ct = {} -- table of char counts
local k, v -- table key and value
for i = 32,126 do -- initialise ASCII slots

ct[i] = 0
end
local T = 0 -- my total chars
local tc = 0 -- actual total chars

-- (no newlines, etc)
while true do

-- read a chunk of text
local lines, rest = f:read(BUFSIZE, "*line")
if not lines then break end
if rest then

lines = lines .. rest .. "\n" end
cc = cc + #lines
-- count words in the chunk
local _, t = string.gsub(lines, "%S+", "")
wc = wc + t
-- count newlines in the chunk
_, t = string.gsub(lines, "\n", "\n")
lc = lc + t

Peter Wilson

TUGboat, Volume 31 (2010), No. 1 91

-- make a list of character frequencies
local K
for i = 1, string.len(lines) do

K = string.byte(lines,i)
if K > 32 then
if K < 126 then
ct[K] = ct[K] + 1
T = T + 1

end
end

end
end

-- strip off input (e.g., fin.ext) file’s
-- extension and make output file fin.gwc
base, ext = string.match(arg[1],

"(%w+)%.(%w+)")
ofile = base..".gwc"

-- cc includes newlines, so T = (lc + wc)
tc = cc - lc - wc
io.output(ofile)
io.write("Character counts in file ",

arg[1], "\n")
io.write("", "lines =", lc, "\n",

"words =", wc, "\n",
"characters = ", tc, "\n\n")

io.write("Character total\n")
for k,v in pairs(ct) do

if v > 0 then
print(string.char(k),v)
io.write(" ", string.char(k), " ",

string.format("%4d",v), "\n")
end

end
print("Output saved in: ", ofile)

That ends the Lua program. In this case a ‘word’
is a sequence of characters followed by one or more
spaces. I was only interested in characters corre-
sponding to the sorts in the fonts that were avail-
able to me. Being English this fortunately restricted
the characters to the ASCII printable character set.
If you need to count other characters then you will
have to extend the program. The Lua manual [2,
p. 198] describes how the word and line count part
of the program works in more detail.

Change is not made without inconvenience,
even from worse to better.

A Dictionary of the English Language: Preface,
Samuel Johnson

2 Changing the layout
A question that pops up from time to time is ‘How
do I change the layout for a particular page?’, where

the ‘layout’ includes items like the size and location
of the textblock, and different headers and footers.

2.1 The shape of the page
You can do many things, but one that you cannot do
is to change the textwidth in the middle of a para-
graph. For instance if the textblock is 30pc wide
on one page and 25pc wide on the following page,
then a paragraph that starts on the first page and
continues onto the next will be 30pc wide on both
pages. This is because TEX internally typesets para-
graph by paragraph according to the current text-
width. Having set a paragraph it then decides if
there should be a pagebreak in it. If there is it puts
the beginning of the already laid out paragraph on
the first page and the remainder, which is already
set internally, goes on the following page(s) with the
same textwidth.

The general page layout parameters are dia-
grammed in Figure 1.

To change the height of the textblock on a par-
ticular page, the LATEX \enlargethispage macro
can be used. This takes a single length argument
which is added to the textheight for the page on
which it occurs—a positive length increases the text-
height and a negative one decreases it. The change
is made at the bottom of the textblock; the location
of the top of the textblock is unchanged.

The quote and quotation environments tem-
porarily change the margins and width of the text-
block, and you can do the same by using, for exam-
ple, the adjustwidth environment provided by the
changepage package [5].

The adjustwidth environment takes two
length arguments, and increases the left
and right margins by the given amounts.
For example, I used
\begin{adjustwidth}{3em}{1.5em}
at the start of this paragraph, and will
end adjustwidth at the end of the para-
graph.

The page layout parameters used are those in
effect at the start of a page when the first item (e.g.,
a character, a box, etc.) is put onto the page. Lay-
out changes after that will not be effective until the
start of the next page. You can, though, change the
text width between pages. The trick here is that
when you change from one column to two columns,
or vice versa, LATEX recalculates its view of the lay-
out. The general scheme is to clear the page, change
the layout parameters, then set the number of col-
umns which starts the same new page again but with
the layout changes implemented. Assuming a one
column document, the general procedure is:

Glisterings

92 TUGboat, Volume 31 (2010), No. 1

The circle is at 1 inch from the top and left of the page. Dashed lines represent
(\hoffset + 1 inch) and (\voffset + 1 inch) from the top and left of the page.

c
Header

Body

Footer

Margin
Note

?\topmargin

?\headheight

?\headsep

?\textheight

?

\footskip

?\marginparpush

-\marginparwidth

-\oddsidemargin

-\marginparsep

-\textwidth

Figure 1: LATEX page layout parameters for a recto page

\clearpage
% change textblock, margins, ...
\onecolumn

If you need them, the changepage package provides
macros to ‘change textblock, margins, ...’.

Just so you can see what happens, the kernel
definition of \onecolumn is:
\def\onecolumn{%

\clearpage
\global\columnwidth\textwidth
\global\hsize\columnwidth
\global\linewidth\columnwidth
\global\@twocolumnfalse
\col@number \@ne
\@floatplacement}

The code for \twocolumn is similar but does a little
more, especially as it takes an optional argument
although that has no effect on the various width
settings.

As an example, if you needed to have different
text heights and widths for one set of pages, those in
the frontmatter perhaps, than for another set, say
the rest of the work, you could define
\newcommand*{\addtotextheightwidth}[2]{%

\clearpage
\addtolength{\textheight}{#1}

\addtolength{\textwidth}{#2}
\onecolumn}

and use it when you need to make a change.

2.2 Headers and footers
Another kind of layout change that I have seen re-
quested is to add ‘Page’ above the page numbers in
the Table of Contents or List of Figures, etc. As
an example say that the requirement is that for the
List of Figures (LoF) the word ‘Figure’ should be
placed flushleft at the start of the column of figure
titles and the word ‘Page’ flushright above the page
numbers; if the LoF continues for more than one
page, these should be repeated at the start of each
page. The page number(s) of the LoF itself should
be centered at the bottom of the page (i.e., the plain
pagestyle). There are similar requirements for the
Table of Contents (ToC) and List of Tables (LoT),
but I’ll just show how the LoF requirements can be
met.

Changing pagestyles can be accomplished with
the fancyhdr package [4] but I will assume that the
memoir class [6] is being used which includes similar
facilities.

The memoir class lets you define as many page-
styles as you want. We need a pagestyle for any

Peter Wilson

TUGboat, Volume 31 (2010), No. 1 93

LoF continuation pages (and others for the ToC and
LoT). Here’s the one for the LoF, which I have called
the lof pagestyle. This puts the page number cen-
tered in the footer and ‘Figure’ at the left in the
header and ‘Page’ at the right.
\makepagestyle{lof}% a new pagestyle

\makevenfoot{lof}{}{\thepage}{} % like plain
\makeoddfoot{lof}{}{\thepage}{} % like plain
\makeevenhead{lof}{Figure}{}{Page}
\makeoddhead{lof}{Figure}{}{Page}

When we start the LoF we need to make sure
that the lof pagestyle will be used for any continua-
tion pages. We can do this by adding the necessary
code to the \listoffigures command, and mem-
oir provides the \addtodef command for doing this.
It takes three arguments, the first is the name of a
macro, the second is code to be added at the start
of the macro’s definition and the third is code to be
added at the end of the macro’s definition.
\addtodef{\listoffigures}{%

\clearpage\pagestyle{lof}}{}

Memoir provides a command that is called be-
fore setting the title of the LoF and another that is
called after the title. You can redefine these to do
what you want. In this case we just need to extend
what happens after the title.
\renewcommand*{\afterloftitle}{%

\thispagestyle{plain}
\par\nobreak
{\normalfont\normalsize Figure \hfill Page}
\par\nobreak}

The above makes the first page of the LoF use the
plain pagestyle, and then puts a line containing ‘Fig-
ure’ at the left and ‘Page’ at the right. The actual
listing of titles and page numbers will start after
these preliminaries.

Setting up the ToC and LoT is almost identical
to the above, but with names changed.

One thing to watch for is that after the LoF
has been processed the lof pagestyle is still in effect.
After the LoF has finished it will be necessary to
revert back to the regular pagestyle which, for the
sake of argument, let’s say is heads. To be on the
safe side the general scheme, then, is:

\documentclass[...]{memoir}
%% define heads pagestyle
%% ToC, LoF, ToC changes
%% more preamble
\addtodef{\mainmatter}{}{\pagestyle{heads}}
\pagestyle{heads}
\begin{document}
%% title pages
%% maybe Preface and such
%% \tableofcontents\clearpage\pagestyle{heads}
%% \listoffigures\clearpage\pagestyle{heads}
%% \listoftables\clearpage\pagestyle{heads}
%% other prelims
\mainmatter
...
\end{document}

which ensures that at the start of the main matter
the regular heads pagestyle is in effect, no matter
what games were played beforehand.

References
[1] Robin Fairbairns. The UK TEX FAQ. Available

on CTAN in help/uk-tex-faq.
[2] Roberto Ierusalimschy. Programming in Lua,

Second Edition. Lua.org, Rio de Janeiro, 2006.
ISBN 85-903798-2-5.

[3] Ruari McLean. The Thames and Hudson
Manual of Typography. Thames and Hudson,
1980. ISBN 0-500-68022-1.

[4] Piet van Oostrum. Page layout in LATEX, 2004.
Available on CTAN in latex/macros/contrib/
fancyhdr.

[5] Peter Wilson. The changepage package, 2008.
Available on CTAN in latex/macros/contrib/
misc/changepage.sty.

[6] Peter Wilson. The memoir class for
configurable typesetting, 2009. Available on
CTAN in latex/macros/contrib/memoir.

� Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at)

earthlink dot net

Glisterings

