
TUGboat, Volume 32 (2011), No. 1 95

siunitx: A comprehensive (SI) units package
Joseph Wright

Abstract
The siunitx package provides a powerful toolkit for
typesetting numbers and units in LATEX. By incor-
porating detail about the agreed rules for presenting
scientific data, siunitx enables authors to concentrate
on the meaning of their input and leave the package
to deal with the formatting. Version 2 of siunitx
increases the scope of the package and is intended
to act as a solid base for further development.

1 Introduction
Physical quantities are important mathematical data,
which appear in print in many scientific publications.
These physical quantities are made up of a num-
ber and an associated unit: the two parts together
make up a single mathematical entity. A series of
international agreements have led to the Système In-
ternational d’Unités (SI units), administered by the
Bureau International des Poids et Mesures (Bureau
International des Poids et Mesures, 2010). This sys-
tem lays down units such as the kilogram, metre and
kelvin, and provides a self-consistent approach to
measuring all physical quantities. At the same time,
there are clearly defined standards which describe
how the data should be presented. The US National
Institute for Standards and Technology (NIST) have
described ‘best practices’ for presenting numbers
and units in scientific contexts (National Institute
for Standards and Technology, 2010).

LATEX’s approach of providing logical structure
is ideally suited to helping authors follow these rules
without needing to study them in detail. However,
this does not mean that it has been easy to write a
comprehensive package to deal with both numbers
and units. This article provides an overview of the
siunitx package (Wright, 2010), which aims to be A
comprehensive (SI) units package.

2 A little history
2.1 Before siunitx
siunitx is the latest in a series of different LATEX
packages for handling units, and it is therefore useful
to know a little about the earlier implementations.

The package units (Reichert, 1998) provides per-
haps the most basic units support: the macro \unit
to mark up input as a unit (with an optional value).

\unit[〈value〉]{〈unit〉}
Building on this, the unitsdef package (Happel,

2005) provides a number of pre-defined unit macros,
which expand to the appropriate symbol(s) for the

unit. Unfortunately, these definitions require addi-
tional macros so that the package can format them
correctly:
\newunit{\newtonmeter}

{\newton\unittimes\meter}
\newunit{\newtonmeterpersec}

{\per{\newton\unittimes\meter}{\second}}

As we will see, siunitx is able to define similar unit
macros but without needing support functions such
as \unittimes.

An alternative approach to defining unit mac-
ros was provided by SIunits (Heldoorn and Wright,
2007). SIunits provides a larger set of pre-defined
units than unitsdef, but again requires support func-
tions in these definitions. These support functions
define the appearance of units, so altering how a
unit is displayed requires a new definition. For ex-
ample, \amperepersquaremetre prints A/m2 while
\amperepersquaremetrenp is used for Am−2.

The SIstyle package (Els, 2008) tackles the need
for units and values to be typeset using the correct
fonts. As such, it focusses on the appearance of the
output, rather than logical markup of input. This
can have advantages, as input such as

\SI{10}{m/s}

is certainly easy to read.
Finally, while not focussed on units, the numprint

package (Harders, 2008) has provided the comple-
mentary ability to format numbers, for example sep-
arating large numbers so that the digits are grouped.

2.2 A new approach to units
Before the development of siunitx, the best approach
to typesetting units was to use the combination of
SIunits and SIstyle, to get logical input and controlled
output.

Development of siunitx began with a simple bug
report for SIunits on comp.text.tex. I naïvely vol-
unteered to take a look at it, and contacted Marcel
Heldoorn with a solution to the issue at hand. It
turned out that he no longer had time for supporting
SIunits, and said that I was free to take over. Having
fixed the bug at hand, I even more naïvely asked on
the newsgroup if there were any improvements to be
made. I soon had quite a list!

I took a step back, and looked at the combin-
ation of SIunits and SIstyle and the feature request
list I’d built up. It was clear that I needed to do
more than simply patch SIunits. I also took a careful
look at biblatex (Lehman, 2010), which shows how
a user interface should be done. My conclusion was
that I needed to write a package from the ground up,
combining the features of SIunits and SIstyle with

siunitx: A comprehensive (SI) units package

http://groups.google.com/group/comp.tex.tex

96 TUGboat, Volume 32 (2011), No. 1

a key–value interface rather than a complex mix of
different control macros.

This effort led to the first version of siunitx,
which inherited a great deal of code from its pre-
decessors. The feature requests kept coming, and
some of these were rather ‘bolted on’ to the first
version of siunitx. Partly as a result of this, and
partly as I’m now involved in the LATEX3 Project, I
decided to rewrite the package using the expl3 ap-
proach (LATEX3 Project, 2010). This has allowed
the internal code of the package to be made much
more structured, which will hopefully enable me to
continue to add new features without compromising
the existing features of the package.

3 Units
The core function of the siunitx package is typeset-
ting units in a flexible way and with a natural input
syntax. The macro which does this is \si (think ‘a
bit like “SI”’). The \si macro can typeset both lit-
eral input such as \si{m.s^{-1}} and the semantic
version \si{\metre\per\second} to give the same
output: m s−1. Allowing two forms of input means
that users get to make a choice on how semantic they
want their input to be.

There are lots of things going on when some-
thing like \si{m.s^{-1}} is typeset. The first thing
to notice is that the superscript will work equally-
happily in math and text mode (the same is true for
subscripts). What is also true is that you get exactly
the same output in both cases: the fonts and spa-
cing used are determined by siunitx. The standard
settings use the document text font for units, but
the document math font for numbers. Numbers as
handled by siunitx are essentially mathematical, and
so they should (probably) match any other mathem-
atics. Both numbers and units are typeset ignoring
any local font changes, such as bold or italics.

Now, some of those choices will not suit everyone:
a classic case is units in section headings, where
bold seems a more ‘natural’ choice than the usual
mid-weight font. To handle the need to be flexible,
siunitx provides the \sisetup macro, which takes a
list of key–value options (there are currently about
140!). Settings can also be given as an optional
argument to \si, which allows them to be applied
to individual cases: \sisetup applies to everything
that follows, subject to the usual TEX grouping. So
in a heading, rather than \si{m.s^{-1}} we might
have \si[detect-weight]{m.s^{-1}}.

What about the unit macros: are they flexible?
One of the key aims of siunitx is to use semantic
markup with units so that different output appear-
ances don’t need different input syntaxes. Sticking

with the example \si{\metre\per\second}, there
are a number of possible variations. As we’ve already
seen, the standard settings give ‘m s−1’, with the
\per macro converted into a superscripted power.
Another common choice is ‘m/s’, using a slash to
show the division. That’s done by setting the option
per-mode = symbol. Then again, you might want
to show things as a fraction, ‘m

s ’, achieved by setting
per-mode = fraction.

That is fine for a relatively simple unit, but what
about a more complex case such as
\si{\joule\per\mole\squared

\metre\per\cubic\candela}

(i.e. Jmol−2 mcd−3)? When given as a fraction or
using a slash, there need to be some brackets or re-
arrangement of the order. The package knows about
this, and can automatically produce the appropriate
output, which might be ‘Jm/(mol2 cd3)’ or ‘ J m

mol2 cd3 ’.
It can even produce mathematically-invalid output
like ‘J/mol2 m/cd3’ if you want.

As already indicated, there are a lot of options
available, and I don’t want to repeat the manual
here. However, I hope that the concept of ‘one clear
input, many forms of output’ comes through.

One last idea to highlight is that new units can
be defined using the two macros \DeclareSIUnit
and \DeclareSIUnitWithOptions. These are used
to set up new units, perhaps with a special appear-
ance. So if I want to give ‘m

s ’ with a slash but
everything else as powers, I might define
\DeclareSIUnitWithOptions{\mpers}

{\metre\per\second}{per-mode = fraction}

and then use \mpers as the unit. Name clashes are
not an issue: siunitx only defines the unit macros
within the argument of its own macros.

4 Numbers
Most of the time, units in scientific writing go with
numbers. So siunitx needs to be able to deal with
those as well. This is handled by the imaginatively-
named \num macro. This takes the number itself as
the one mandatory argument, with a first optional
argument for any settings that apply.

Probably the most common function this per-
forms is grouping digits. So \num{12345} will give
‘12 345’ rather than ‘12345’. The latter is of course
available as an option: group-digits = false.

There are two other common formatting changes.
First, it is useful to format \num{12e3} as ‘12× 103’,
which is done automatically. Secondly, depending
on where in the world you are you might want
\num{123.45} to display as ‘123,45’. The package
uses settings such as input-exponent-markers and

Joseph Wright

TUGboat, Volume 32 (2011), No. 1 97

output-decimal-marker to decide on the format of
the input and how it should look as output for these
cases.

Another common requirement with numbers is
to round them, fixing either decimal places or signi-
ficant figures. Here, the two options round-mode and
round-precision are used. The standard settings
do not do any rounding at all, so \num{123.456}
gives ‘123.456’. This can easily be converted into
‘123.46’ by setting round-mode = places, or ‘120’
by setting round-mode = figures. As you might
work out, the standard setting is round-precision
= 2, and this applies to whatever rounding is being
done. As we’ll see, rounding is particularly useful in
tables.

5 Numbers with units
We’ve seen both numbers and units on their own, but
obviously the two need to be combined. For that, the
\SI macro is available, and takes one number and one
mandatory unit argument to print the combination
of the two. As with \num and \si, the first argument
is optional and applies local settings.

All of the options for units and numbers alone
apply to combinations too, but there are some special
options which only make sense for combinations. The
most obvious is a choice of the separator between
a number and the associated unit. The standard
setting is thin space: ‘10m’. This is controlled by
the number-unit-separator option, which expects
an argument in math mode. So to use a full test-
mode space you’d set number-unit-separator =
\text{ }, with the result ‘10 m’.

Closely related to the size of the space between
number and unit is how it behaves at a line break.
The standard settings do not allow a break here,
but particularly in narrow columns (such as in this
document) it is more realistic to allow breaks to
occur. The option to do control is called allow-
number-unit-breaks, which will allow a break: ‘10
m’. (As you might guess, the text in this paragraph
is finely balanced to give a break in the right place!).

6 Tables
Placing numbers in tables so that the decimal mark-
ers are aligned is very important so that scientific
data are clear. To support this, siunitx defined the
S column type. At its most basic, all you do is use
this in place of a c column and let the package do
the work. So with the input
\begin{tabular}{S}

\toprule
{Some numbers} \\
\midrule

Table 1: Simple number alignment using the S
column

Some numbers
1.234× 102

567.8
4.3543× 101

Table 2: Exploiting the power of the S column

Some numbers/102

1.23
5.68
0.44

1.234e2 \\
567.8e0 \\

4.3543e1 \\
\bottomrule

\end{tabular}
you can get the output in Table 1. Notice that the
table heading is wrapped in braces: this tells siunitx
to treat this as text and not to look for a number.

Now, Table 1 is not a very good table, as the
data are not really comparable. It’s usually best
to avoid exponents in the body of a table, and to
put them into the header instead. It’s also common
to round tabular data to some sensible number of
significant figures. Table 2 is a better version of the
same table, with input that reads
\begin{tabular}{S[

table-auto-round,
table-omit-exponent,
table-format = 1.2,
fixed-exponent = 2

]}
\toprule
{Some numbers/\num{e2}} \\
\midrule

1.234e2 \\
567.8e0 \\

4.3543e1 \\
\bottomrule

\end{tabular}
This illustrates several table-related functions in
one go. First, the S column accepts an optional
argument, letting each column have its own beha-
viour. The option table-format is used to define
how much space siunitx will need for the output:
here there is one integer and two decimal digits, with
no signs or exponents. The table-auto-round and
table-omit-exponent options have self-explanatory

siunitx: A comprehensive (SI) units package

98 TUGboat, Volume 32 (2011), No. 1

names, while fixed-exponent = 2 is used to ‘shift’
the decimal place in the input. This combination of
options means that the input does not require any
manipulation: an advantage if it’s a long list copied
from some automated source!

7 Extras
We’ve seen the main macros that siunitx provides,
but there are a few more specialist ones which deal
with more unusual cases. These ‘extras’ all take the
usual optional first argument, and have their own
dedicated options.

The \ang macro takes angle input, either as a
decimal or in degrees, minutes and seconds. The
latter is necessary for things like ‘1◦2′3′′’, which is
given as \ang{1;2;3}. One particularly notable
option here is angle-symbol-over-decimal, which
can give output such as ‘1◦2′3 .′′4’ from the input
\ang[angle-symbol-over-decimal]{1;2;3.4}

I’m told that this is useful for astronomy: that is far
from my area of expertise, but as always the aim is
to give users what they want with the minimum of
fuss.

There are two specialist macros for cases where
the same unit applies to multiple numbers: \SIrange
and \SIlist. These let you type
\SIrange{10}{20}{\metre}

and get ‘10m to 20m’, or to type
\SIlist{1;2;3;4;5}{\metre}

and get ‘1m, 2m, 3m, 4m and 5m’. You’ll notice
that the standard settings repeat the unit for each
number. Not everyone will like that, so you can use
\SIlist[list-units = brackets]

{1;2;3;4;5}{\metre}

and get ‘(1, 2, 3, 4 and 5)m’, or even
\SIlist[list-units = single]

{1;2;3;4;5}{\metre}

to give the (mathematically incorrect) ‘1, 2, 3, 4 and
5m’.

8 Summary
The siunitx package aims to be ‘a comprehensive (SI)
units package’ while remaining accessible to users. It
supplies a small number of flexible macros along with
a large set of key–value options to control output
either globally or for individual cases.

Here, I’ve tried to highlight how siunitx works,
showing off some of the powerful features it supplies.
The manual contains examples for almost all of the
options, and if you can’t see how to do something
with siunitx you can always submit a feature request!

9 Acknowledgements
Thanks to Danie Els and Marcel Heldoorn for the
SIstyle and SIunits packages: siunitx would not exist
without them. Thanks to Stefan Pinnow for his
careful testing of siunitx: his contribution to the
package has been invaluable.

References
LATEX3 Project. “The expl3 package and LATEX3

programming”. Available from CTAN,
macros/latex/contrib/expl3, 2010.

Bureau International des Poids et Mesures.
“The International System of Units (SI)”.
http://www.bipm.org/en/si/, 2010.

Els, D. N. J. “The SIstyle package”. Available from
CTAN, macros/latex/contrib/SIstyle, 2008.

Happel, Patrick. “unitsdef –Typesetting units
with LATEX2ε”. Available from CTAN,
macros/latex/contrib/unitsdef, 2005.

Harders, Harald. “The numprint package”.
Available from CTAN, macros/latex/contrib/
numprint, 2008.

Heldoorn, Marcel, and J. A. Wright. “The SIunits
package: Consistent application of SI units”.
Available from CTAN, macros/latex/contrib/
SIunits, 2007.

Lehman, Philipp. “The biblatex package:
Programmable Bibliographies and Citations”.
Available from CTAN, macros/latex/contrib/
biblatex, 2010.

National Institute for Standards and Technology.
“International System of Units from NIST”.
http://physics.nist.gov/cuu/Units/index.
html, 2010.

Reichert, Axel. “units.sty – nicefrac.sty”. Available
from CTAN, macros/latex/contrib/units,
1998.

Wright, Joseph A. “siunitx –A comprehensive
(SI) units package”. Available from CTAN,
macros/latex/contrib/siunitx, 2010.

� Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2 dot co dot uk

Joseph Wright

macros/latex/contrib/expl3
http://www.bipm.org/en/si/
macros/latex/contrib/SIstyle
macros/latex/contrib/unitsdef
macros/latex/contrib/numprint
macros/latex/contrib/numprint
macros/latex/contrib/SIunits
macros/latex/contrib/SIunits
macros/latex/contrib/biblatex
macros/latex/contrib/biblatex
http://physics.nist.gov/cuu/Units/index.html
http://physics.nist.gov/cuu/Units/index.html
macros/latex/contrib/units
macros/latex/contrib/siunitx

	Introduction
	A little history
	Before siunitx
	A new approach to units

	Units
	Numbers
	Numbers with units
	Tables
	Extras
	Summary
	Acknowledgements

