
TUGboat, Volume 32 (2011), No. 2 185

Macro interfaces and the getoptk package
Michael Le Barbier Grünewald

1 Introduction
We present the getoptk macro package for the plain
format. It eases the definition of macros whose inter-
face is similar to the one used by TEX primitives such
as \vrule or \hbox. We discuss some characteristics
of interface styles and a short classification of these
before describing our package. The implementation
of the \readblanks macro, a variant of the primi-
tive \ignorespaces triggering a callback, seems to
us especially interesting.

The getoptk macro package is similar to xkeyval,
in that it allows optional arguments to be specified
as a dictionary. However, it avoids the introduction
of a new syntactic construction for the concrete form
of the dictionary. Instead, it tries to imitate the con-
vention used by \vrule and similar TEX primitives.

2 Literate programming
We use Norman Ramsey’s NOWEB [5] literate pro-
gramming tool to present our code. A file is split up
in chunks, each of which is given an identifier that we
will always write in italics; for example, Definition
of getoptk. In this text, chunk names that are not
also file names are capitalised; although this is not
conventional English syntax, it helps recognising a
chunk name as such in the text.

3 Characteristics of interfaces
The main characteristics of macro interfaces are or-
ganised around the three ideas of concision, robust-
ness and soundness, which in turn are the three
vertices of the following tension triangle:

concision

soundness

robustness

The idea of concision expresses itself in interfaces
encouraging a terse and short way to type in a man-
uscript. Robustness is the ability of an interface to
perform well in a wide range of contexts, especially
nested calls. Sound interfaces mix well in the manu-
script and do not break its homogeneity. They are
easy to memorise and help in having a nice looking
manuscript.

These three ideas are distinct: The \proclaim
macro in plain TEX and the modal behaviour of the
letter example format described in The TEXbook [3]
both put an emphasis on concision but break ro-

bustness and soundness. The verbatim environment
in LATEX is sound and concise but not robust. If ro-
bustness is needed in a verbatim typesetting job, we
may rely on the usual markup and named characters
to input our data: we get a sound and robust answer
to our problem, but this lacks concision.
Remarks:
1. Lexical analysis techniques can be used to build

concise macro interfaces, often at the price of
robustness. This loss is easily circumvented by
cleanly separating the lexical analysis part and
the processing part of the macro job.

2. Concise interfaces help in producing a text that
is easy to maintain. The maintainability burden
caused by the lack of concision of an interface
can sometimes be ameliorated by a third party
tool— e.g., the code pretty-printer included in
the literate programming toolWEAVE [4]—used
to automatically generate parts of the text using
a non-concise macro set.

3. Sound interfaces make life easier for third party
software processing TEX manuscripts.

4 Bestiary
Let us quickly review different styles of familiar in-
terfaces and means to define macros using them.
Note that many macros do not use purely one of
the styles of interface described below, but rather a
combination of them.

4.1 Simple
In the simple interface style, the control sequence is
followed by its arguments, each one being either a
token or a group. Macros using the simple interface
style are defined by the \def primitive:
\def\example#1#2{%
This replacement text uses #1 and #2.

}

4.2 Delimited
Macros using the delimited interface style take ad-
vantage of the ability of \def to be given somewhat
arbitrary argument delimiters. This feature lets the
macro usage blend smoothly in the surrounding text.
A popular example is the \proclaim macro defined
in plain:
\proclaim Theorem 1. {\TeX} has a powerful
macro capability.\par

This macro has two delimited arguments, one start-
ing right after the \proclaim control sequence and
running to the first dot on the line, the second start-
ing after the point and ending with the current para-
graph, signalled by a double carriage return or an

Macro interfaces and the getoptk package

186 TUGboat, Volume 32 (2011), No. 2

explicit \par as in the example above. If \proclaim
were designed to use the simple interface style, the
previous usage example would have look like this:
\proclaim{Theorem 1}{{\TeX} has a powerful
macro capability.}

4.3 Register
The register interface style relies on registers and
control sequences instead of formal arguments to
pass informations to the macro. With a hypothetical
implementation of \proclaim using this interface
style, the previous example could be:
\def\proclaimlabel{Theorem 1}
\def\proclaimtext{{\TeX} has a powerful
macro capability.}

\proclaim
This use of global variables, as it is often referred to
in classical programming languages, usually breaks
the ability of a macro to support nested calls. This
is not always a problem in TEX, where modifications
of registers can be made local to a group. There is
a realm where this use of global variables is often
the rule: machine level programming. Indeed, many
BIOS or OS functions on PCs are serviced through
software interruptions. In the typical case, the regis-
ters of the machine are assigned values corresponding
to the parameters of the call, and the interruption is
then triggered.

Some interactions with the typesetting engine
TEX are achieved through the use of dedicated reg-
isters. Using a register style for the interface of
a macro may give the user a feeling he is interacting
with TEX as a machine. This style may be appro-
priate for font selection schemes and other “system
services”. The main macro of our package partially
uses this interface style.

There is no special provision needed to define
a macro using such an interface, though some pack-
ages, including getoptk, provide the user with spe-
cialised macros used to set the values of the registers.

4.4 Keyword
The TEX primitives \hrule, \vrule, \hbox, \vbox
and \vtop use a special interface style that we call
the keyword interface style. A typical call to the
\hrule primitive is:
\hrule width 12pt depth 2pt height 10pt
Each parameter to the call is introduced by a key-
word, then comes the actual parameter associated to
the keyword. Keywords have no fixed order and it is
possible to repeat the same keyword more than once
or to omit some or all of them. It is a very flexible

way to pass arguments to macros, similar to labels in
the OCaml programming language. Unluckily, there
is no facility in TEX itself or in plain to define macros
using this interface style. The second part of this
paper presents such a facility. A close variant of
this style is the keyval style discussed hereafter and
whose popularity among LATEX hackers is increasing.

4.5 Starred
Macros having a starred variant are well known to
LATEX users. Structure domain related macros, such
as \chapter or \section, usually have a starred
variant whose behaviour is similar to the original
version but does not produce an entry in the table of
contents of the document or receive a section number.
The use of a macro using this interface style and the
simple interface style is illustrated by the following
line of code:
\section*{Introduction}

Starred variants of macros are supported by the pre-
ferred LATEX methods for creating new macros. Any
macro defined by \newcommand can use the pseudo-
predicate \@ifstar to check for itself being called
with a star or not.

4.6 Bracket
A common feature found in interfaces to macros
defined in LATEX is the use of a bracketed optional
argument. We call this the bracket style interface.
The \cite macro defined by LATEX uses this interface
style and the simple one, as illustrated by:
\cite[Theorem~1]{TEXBOOK}

The definition of macros using this style of interface
is supported in LATEX by \newcommand, where the
\cite command used above could have been (but
was not) defined by
\newcommand{\cite}[][1]{...}

4.7 Keyval
The keyval interface style is named after a popular
LATEX package keyval by David Carlisle [2] and its
successor xkeyval by Hendri Adriaens [1].

Macros using this interface style allow options
of the form key=value; a sample use is:
\mybox[text=red,left=5pt]{some text}

It is easy to define macros using this interface style
with the xkeyval package, which is available to plain
and LATEX users. This interface is probably unsound
in a plain TEX document but may fit well in a LATEX
document, since the notation it uses is reminiscent
of the one used for package arguments.

Michael Le Barbier Grünewald

TUGboat, Volume 32 (2011), No. 2 187

5 Presentation of the package
We now describe the interface and the implementa-
tion of the getoptk package. Our goal is to provide
users of getoptk with an easy way to define macros
using the keyword interface style described above.
This style is a very flexible way to pass arguments
to macros and already used by TEX primitives. The
use of this style therefore favours soundness of the
interface.

Rather than presenting a formal specification
of our macros, let us take a look at an example of
utilisation and use that as a basis to discuss the
features and the operation of the package.

5.1 Usage example
We show how to use getoptk to define \example, a
macro having a mandatory argument and accepting
optional arguments in the keyword interface style.
〈example.tex〉≡

\input getoptk
\catcode‘\@=11
〈Dictionary definition〉
〈Main definition〉
〈Usage〉
〈Usage equivalence〉
\bye

We need first to read the getoptk package. In the code
chunk Dictionary definition we require the creation
of a new optional argument dictionary that we fill
with bindings between keywords and behaviours. In
the following, we refer to a dictionary of this kind as
a behaviour dictionary. We then define the \example
command itself where the magic happens in Main
definition and add a few examples in Usage and their
replacement text after the call to \getoptk in Usage
equivalence.

Note that we use private names containing @
in this example, thus the example starts with the
familiar \catcode mantra.

We require the creation of a fresh behaviour dic-
tionary—a data structure represented by a control
sequence—with \newgetoptkdictionary to bind
keywords to behaviours. In this example, the bind-
ing operations are performed by the commands

\defgetoptkflag,
\defgetoptkbracket and
\defgetoptkcount.

The bindings are written in the dictionary associ-
ated with example because it is the last one cre-
ated. (It is possible to choose another dictionary
with \setgetoptkdictionary.) The binding mac-
ros mix the register interface style and the simple
one. This is convenient because this avoids repeating

the argument example each time a binding macro
is called and there is no plausible usage scenario
involving nasty nested calls.
〈Dictionary definition〉≡

\newgetoptkdictionary{example}
\defgetoptkflag{alpha}{(alpha)}
\defgetoptkflag{beta}{(beta)}
\defgetoptkcount{gamma}{(gamma #1)}
\defgetoptkbracket{delta}{%

\ifgetoptkbracket
(delta "#1")%

\else
(delta)%

\fi}
Each binding macro has two arguments: a key-
word, that consists of a sequence of catcode 11 to-
kens, and a behaviour, a valid replacement text for
a macro. The binding macro arranges things so that
each occurrence of the keyword seen in the call to
\example triggers the evaluation of the correspond-
ing behaviour. Before we give more details on this
triggering mechanism and the semantics of the bind-
ing, let us look at the definition of \example:
〈Main definition〉≡

\def\example{%
\setgetoptkdictionary{example}%
\getoptk\example@M}

\def\example@M#1#2{%
\par\noindent[{\tt #1}][#2]}

We see that the definition of \example is basically
a call to \example@M, supervised by \getoptk. The
task of \getoptk is to look for keywords on the
input stream and aggregate the corresponding be-
haviours and arguments. The resulting aggregate
is then given as the first argument to \example@M.
Before we pass control to \getoptk, we first use
\setgetoptkdictionary to activate the behaviour
dictionary defined above.

Returning to the above Dictionary definition,
the two calls to \defgetoptkflag bind the key-
words alpha and beta with the behaviours (alpha)
and (beta). These are saved as the replacement
texts of \getoptk@behaviour@example@alpha and
\getoptk@behaviour@example@beta. Given this,
\getoptk arranges things so that the sequence:
〈Usage〉≡

\example beta alpha {omega}
expands to:
〈Usage equivalence〉≡

\example@M{%
\getoptk@behaviour@example@beta
\getoptk@behaviour@example@alpha

}{omega}

Macro interfaces and the getoptk package

188 TUGboat, Volume 32 (2011), No. 2

The call to \defgetoptkcount binds gamma to the
behaviour (gamma #1) but also notes that the gamma
keyword must be followed by an integer—a valid
right-hand-side for count registers. This integer will
replace the formal paragraph #1 when behaviours
are triggered.

The last binding of our example is performed by
\defgetoptkbracket, that defines a keyword admit-
ting an optional bracketed argument. As illustrated
by our example, the behaviour uses the predicate
\ifgetoptkbracket to test for the presence of an
optional argument. This is a true predicate created
by the \newif command. The sequence
〈Usage〉+≡

\example gamma 2 delta [10] {omega}

then expands to
〈Usage equivalence〉+≡

\example@M{%
\getoptk@behaviour@example@gamma{2}%
\getoptkbrackettrue
\getoptk@behaviour@example@delta{10}%

}{omega}

The \getoptk command is generous in accepting
white space. In the following example, both calls to
\example are expanded the same way.
\example delta[2]gamma10beta{omega}
\example delta [2] gamma
10 beta {omega}

The getoptk package provides more binding macros,
reading dimensions or tokens, and it is also possible
to create new ones (6.6).

5.2 Criticism of the interface
We criticise the interface of a macro using \getoptk
to get its optional arguments, in view of the three
characteristics we isolated in the introduction:
soundness holds, because the interface mimics the

behaviour of some TEX primitives;
concision is as respected as it can, but the interface

to a macro admitting a large number of optional
arguments cannot be that concise;

robustness seems to hold, and it is also possible
to circumvent the direct use of \getoptk and
directly construct the resulting call, as demon-
strated by the Usage equivalence chunks above.

6 Implementation
We dive here into the deepest part of the job.

6.1 Overview
There are three important parts in the implementa-
tion. The Definition of getoptk and the elaboration

of dedicated Lexical analysis procedures will almost
entirely capture our attention. It is also useful to
define macros manipulating Behaviour dictionaries:
the techniques used there are very similar to those
used in list processing [3, p. 378] and we will not
give many details. In these three parts, there are a
few short macro definitions that may have a general
usefulness, we gather them in Ancillary definitions.
〈getoptk.tex〉≡

\catcode‘\@=11
〈Ancillary definitions〉
〈Lexical analysis procedures〉
〈Definition of getoptk〉
〈Behaviour dictionaries〉
\catcode‘\@=12

The very special nature of TEX programs forbids the
use of literate programming techniques to describe
the flow of the procedure. We use instead an imper-
ative pseudo-code notation, where d stands for the
active behaviour dictionary and c is the argument
given to \getoptk, the callback taking control of the
execution flow after \getoptk completes its task.

Algorithm 1 Workflow of getoptk
x← ∅ {accumulator}
f ← true {loop flag}
while f do

k ←〈incoming tokens〉
5: if k is bound in d then

b← behaviour of k
a← argument of k
stack b and a on x

else
10: f ← false

apply c to x
process tokens in k

end if
end while

The work needed to implement this simple procedure
falls in three categories. First, we have to manipulate
data structures. The easiest way to do this is to use
registers to store arguments and output of procedures
manipulating the data structure. There is no special
difficulty in this lengthy task. Second, structured
programming in TEX is always an involved task,
since the decision parts of the code have to put the
bits whose processing they require on the stream
of incoming tokens. We end up with many short
macros mutually calling themselves. Again, there is
no real difficulty here but rather a code organisation
problem. Third, there are a few tricks in the lexical
analysis techniques used (6.7).

Michael Le Barbier Grünewald

TUGboat, Volume 32 (2011), No. 2 189

6.2 Ancillary definitions
We use many short macros whose definition can be
found in The TEXbook, such as \gobble:
〈Ancillary definitions〉≡

\def\gobble#1{}
〈More ancillary definitions〉

We also need \cslet, \elet and \csdef but omit
the definition of these classical macros here. Instead
we proceed to the definition of \tokscat used later
in the text to concatenate two token registers into a
third, as in
\tokscat\toks0 &\toks2\to{\toks0}

Note the space after the first occurrence of the char-
acter 0, it is mandatory to put a space there if you
do not use a named token register.
〈Ancillary definitions〉+≡

\def\toksloadcsexpansion#1\to#2{%
#2=\expandafter{#1}}

\def\tokscat#1\to#3{%
\beginnext
\edef\tokscat@a{\the#1\the#2}%
\toks2={#3}%
\toksloadcsexpansion\tokscat@a

\to{\toks4}%
\edef\next{\the\toks2={\the\toks4}}%
\endnext}

This control sequence is similar to \concatenate [3,
p. 378] concatenating two lists.

6.3 Description of behaviour dictionaries
A behaviour dictionary is a list of triples represented
like this:

\\{{〈keyword〉}{〈parser〉}{〈behaviour〉}}

We already discussed the keyword and behaviour
fields (5.1) but there is a new feature. The parser
field contains a control sequence whose job is to read
the argument associated with keyword, removing its
tokens from the input stream and storing them in a
dedicated token register:
〈Definition of getoptk〉≡

\newtoks\getoptkargument

Once the parser has completed its task, it gives con-
trol back to getoptk by calling \getoptkcallback.

The \getoptk macro requires that a valid be-
haviour dictionary be stored in \getoptkdictionary
before it is called. The \setgetoptkdictionary
macro can be used for this; it is defined in Behaviour
dictionaries, together with macros used in Dictionary
definition from the usage example (5.1).

6.4 Definition of entry and exit blocks
The main piece of code is divided into many small
macros, whose names consist of a common prefix
getoptk followed by the private namespace character @
and a capital letter. This notation is inspired by
assembly languages providing local labels (usually
denoted by a single digit). Using this notation puts
the emphasis on all these macros being private pieces
of a larger entity. The letter is sometimes chosen
according to the function of the code (continue, end
or exit, loop, main, predicate) but most of the time,
letters are simply used in sequence, from A to Z.
Small letters are used for private variables. Here is
the, somewhat deceiving, definition of \getoptk:
〈Definition of getoptk〉+≡

\def\getoptk#1{%
\beginnext
\toks0={#1}%
\toks2={}%
\toks4={}%
\toks6={}%
\getoptkargument={}%
\getoptk@L}

The argument of \getoptk is a callback, it is saved
in \toks0, that corresponds to c in Algorithm 1. The
content of \getoptkargument and some scratch reg-
isters are erased. The register \toks2 plays the role
of the accumulator x. The first token of the replace-
ment text is \beginnext, which has not yet been
defined. As its name suggests, it has a companion
macro \endnext:
〈Ancillary definitions〉+≡

\def\beginnext{%
\begingroup
\let\next\undefined}

\def\endnext{%
\expandafter\endgroup\next}

This kind of construction is familiar to TEX pro-
grammers using \edef constructs: it allows the easy
opening of a group inside which we are allowed to
play all kinds of register-based games and finally use
\edef to compute an appropriate replacement text
for \next. The exit block of our procedure is:
〈Definition of getoptk〉+≡

\def\getoptk@E{%
\edef\next{%

\the\toks0{\the\toks2}%
\the\toks4}%

\endnext}

We already know that \toks0 holds the callback reg-
istered by the user who called \getoptk, and \toks2
the material gathered so far by the whole procedure.

Macro interfaces and the getoptk package

190 TUGboat, Volume 32 (2011), No. 2

Register \toks4 corresponds to k in Algorithm 1 and
contains tokens that were removed from the input
stream but failed to compare with a keyword bound
in the active behaviour dictionary. Please take a
look again at the first example of usage discussed
above (5.1):
\example beta alpha {omega}
When the \getoptk procedure completes it ulti-
mately calls \getoptk@E. Right after the evaluation
of \edef the replacement text of \next is
\example@M{%

\getoptk@behaviour@example@beta
\getoptk@behaviour@example@alpha}

which \expandafter puts again in the stream of
incoming tokens, therefore replacing the original se-
quence \example beta alpha.

6.5 Definition of the main loop
We read the incoming tokens that may stand for a
keyword. For this, we use two custom lexical analysis
procedures (6.7): \readblanks that discards blanks
on the input stream and \readletters that gathers
tokens with catcode = 11 in a register.
〈Definition of getoptk〉+≡

\def\getoptk@L{%
\readblanks\then\getoptk@A\done}

\def\getoptk@A{%
\readletters\to\toks4\then

\getoptk@B
\done}

We now look for the keyword stored in \toks4 in the
dictionary \getoptkdictionary, using the classical
list scanning technique described in The TEXbook [3,
p. 378].
〈Definition of getoptk〉+≡

\def\getoptk@B{%
\let\getoptk@N\getoptk@E
\let\\\getoptk@S
\getoptkdictionary
\getoptk@N}

The scanning macro \getopk@S first unpacks its ar-
gument into a triple

\\{{〈keyword〉}{〈parser〉}{〈behaviour〉}}
The real work happens in \getoptk@T, which sets the
value of the \getoptk@N callback to a value requiring
the lecture of an argument to keyword with parser.
Two values for the parser field have a special meaning:
an empty value means no argument, while [] means
a bracketed optional argument.
〈Definition of getoptk〉+≡

\def\getoptk@S#1{\getoptk@T#1}

\def\getoptk@T#1#2#3{%
\edef\getoptk@a{\the\toks4}%
\def\getoptk@b{#1}%
\def\getoptk@p{#2}%
\ifx\getoptk@a\getoptk@b

\let\\\gobble
\toks6={}%
\toks8={#3}%
\def\getoptk@N{#2}%
\def\getoptk@a{}%
\ifx\getoptk@p\getoptk@a

\let\getoptk@N\getoptkcallback
\fi
\def\getoptk@a{[]}%
\ifx\getoptk@p\getoptk@a

\let\getoptk@N\getoptk@O
\fi

\fi}
Each parser must end with a call to the callback
\getoptkcallback that is in charge of aggregating
behaviours and their arguments in the accumula-
tor \toks2. It relies on \tokscat to concatenate
two token registers. The \getopk@O parser uses
the register \toks6 to communicate the position
of \ifgetoptkbracket to \getoptkcallback. The
old value of \getoptk@p defined in \getoptk@T is
used to recognise the case when we did not have to
gather an argument. Ultimately, we branch to the
main loop \getoptk@L again.
〈Definition of getoptk〉+≡

\def\getoptkcallback{%
\tokscat\toks2 &\toks6\to{\toks2}%
\tokscat\toks2 &\toks8\to{\toks2}%
\def\getoptk@a{}%
\ifx\getoptk@p\getoptk@a

\toks6={}%
\else

\edef\getoptk@N{%
\toks6={%

{\the\getoptkargument}%
}%

}%
\getoptk@N

\fi
\tokscat\toks2 &\toks6\to{\toks2}%
\getoptk@L}

6.6 Definition of parsers
The final step is the definition of parsers. Here is the
one associated with keywords admitting an optional
bracketed argument.

〈Definition of getoptk〉+≡
\newif\ifgetoptkbracket

Michael Le Barbier Grünewald

TUGboat, Volume 32 (2011), No. 2 191

\def\getoptk@O{%
\readblanks\then

\futurelet\getoptk@t\getoptk@P
\done}

\def\getoptk@P{%
\ifx\getoptk@t[%]

\toks6={\getoptkbrackettrue}%
\let\getoptk@N\getoptk@Q

\else
\toks6={\getoptkbracketfalse}%
\let\getoptk@N\getoptkcallback

\fi
\getoptk@N}

\def\getoptk@Q[#1]{%
\getoptkargument={#1}%
\getoptkcallback}

We next define a meta-parser and use it to define
a parser for integers. This meta-parser gives access
to internal TEX parsers associated with the various
types of registers: to parse a value that is a valid right-
hand-side for a dimen register, it must be provided a
scratch dimen register, and so on. The value of this
register is modified within a group, so any register
is suitable as an argument for the meta-parser.
〈Definition of getoptk〉+≡

\def\getoptkmetaparser#1{%
\def\getoptkmetaparser@r{#1}%
\afterassignment\getoptkmetaparser@A
#1}

\def\getoptkmetaparser@A{%
\beginnext
\toks2=\expandafter{%

\getoptkmetaparser@r
}%
\edef\next{%

\noexpand
\getoptkmetaparser@B{\the\toks2}%

}%
\endnext}

\def\getoptkmetaparser@B#1{%
\edef\getoptk@N{%

\getoptkargument={\the#1}%
}%
\getoptk@N
\getoptkcallback}

\def\getoptkcountparser{%
\getoptkmetaparser{\count0 }}

〈Definition of getoptk〉+≡
〈More parsers〉

We similarly define
\getoptkdimenparser,
\getoptkskipparser and
\getoptktoksparser

in More parsers, but omit these details.
It is possible to define new parsers by following

the pattern of \getoptcallback: use a \beginnext/
\endnext pair to read the argument and then arrange
for \next to expand to
\getoptkargument={argument}\getoptkcallback.

6.7 Lexical analysis procedures
We define two macros performing a simple task re-
lated to lexical analysis. The first one, \readblanks,
has the seemingly simple task of discarding blank
tokens on the input stream and triggering a callback
when it finds the first non-blank token. The second
one, \readletters, gathers in a register the largest
prefix of catcode 11 tokens found in the input stream,
and triggers a callback.

The TEX primitive \ignorespaces does not sup-
port any callback. Thus we have to implement a
macro of our own achieving this effect. It is not as
easy as it seems, though at a high level, the task
looks straightforward. We denote our callback by c:

Algorithm 2 Reading white space
f ← true
while f = true do

t← incoming token
if t is a space or a newline token then
discard t

else
f ← false

end if
end while
trigger c

We use \futurelet to scan incoming tokens and
therefore need to bind a space token and a newline
token to some control sequences. We can then ap-
ply \ifx to compare the incoming token and these
control sequences. Binding these tokens to control
sequences cannot be done with a simple \let as they
would then be overlooked by TEX. But a clever use
of \futurelet will do:
〈Lexical analysis procedures〉≡

\begingroup
\catcode‘*=13
\def*#1{}
\global\futurelet\spacetoken*^^20\relax
\global\futurelet\newlinetoken*^^0a\relax
\endgroup

The main loop uses \futurelet to get an incom-
ing token and test it in turn against \spacetoken,
\newlinetoken, \par and \input to make the deci-
sion of exiting the loop with \readblanks@E, discard-
ing a blank with \readblanks@S or a paragraph with

Macro interfaces and the getoptk package

192 TUGboat, Volume 32 (2011), No. 2

\readblanks@I, or expanding an \input command
with \readblanks@X.
〈Lexical analysis procedures〉+≡

\def\readblanks\then#1\done{%
\beginnext
\def\next{#1}%
\readblanks@L}

\def\readblanks@L{%
\futurelet\readblanks@t\readblanks@A}

\def\readblanks@A{%
\let\readblanks@N\readblanks@E
\ifx\readblanks@t\spacetoken

\let\readblanks@N\readblanks@S
\fi
\ifx\readblanks@t\newlinetoken

\let\readblanks@N\readblanks@S
\fi
\ifx\readblanks@t\par

\let\readblanks@N\readblanks@I
\fi
\ifx\readblanks@t\input

\let\readblanks@N\readblanks@X
\fi
\readblanks@N}

\def\readblanks@E{\endnext}

The actual discard of a space token requires a small
trick. An easy way to discard a general token is to
use a macro ignoring its argument: this will not work
here, because space tokens are ignored by TEX as
it searches the input stream for a macro argument.
An assignment to a counter register will consume a
space token following it: the space we want to get
rid of then marks the end of a numeric constant and
is discarded. We use \afterassignment to regain
control after this.
〈Lexical analysis procedures〉+≡

\long\def\readblanks@S{%
\afterassignment\readblanks@L
\count0=0}

The two last choices, ignore and expand, are readily
implemented:

〈Lexical analysis procedures〉+≡
\def\readblanks@I#1{%

\readblanks@L}
\def\readblanks@X{%

\expandafter\readblanks@L}

〈Lexical analysis procedures〉+≡
〈Definition of readletters〉

Our second analysis procedure \readletters gath-
ers tokens with catcode 11 in a register and trig-
gers a callback. It is much like \readblanks, a
\futurelet-based loop. We will not reproduce it
here.

7 Conclusion
We’ve surveyed macro interface styles and imple-
mented the interface used by \vrule, etc., for plain
TEX. We hope this will be of use to other macro
writers.

� Michael Le Barbier Grünewald
Hausdorff Center for Mathematics

Villa Maria Endenicher Allee 62
D 53 115 Bonn
Germany
michi (at) mpim-bonn dot mpg dot de

References
[1] Hendri Adriaens, The xkeyval package. 2008.

http://mirror.ctan.org/macros/latex/
contrib/xkeyval

[2] David Carlisle, The keyval package. 1999.
http://mirror.ctan.org/macros/latex/
required/graphics

[3] Donald E. Knuth, The TEXbook. Addison
Wesley, Massachusetts. Corrected edition, 1996.

[4] Donald E. Knuth, The Web System of
Structured Documentation. 1983.

[5] Norman Ramsey, Noweb: A Simple, Extensible
Tool for Literate Programming. http:
//www.cs.tufts.edu/~nr/noweb

Michael Le Barbier Grünewald

http://mirror.ctan.org/macros/latex/contrib/xkeyval
http://mirror.ctan.org/macros/latex/contrib/xkeyval
http://mirror.ctan.org/macros/latex/required/graphics
http://mirror.ctan.org/macros/latex/required/graphics
http://www.cs.tufts.edu/~nr/noweb
http://www.cs.tufts.edu/~nr/noweb

	Introduction
	Literate programming
	Characteristics of interfaces
	Bestiary
	Simple
	Delimited
	Register
	Keyword
	Starred
	Bracket
	Keyval

	Presentation of the package
	Usage example
	Criticism of the interface

	Implementation
	Overview
	Ancillary definitions
	Description of behaviour dictionaries
	Definition of entry and exit blocks
	Definition of the main loop
	Definition of parsers
	Lexical analysis procedures

	Conclusion

