
126 TUGboat, Volume 40 (2019), No. 2

Combining LATEX with Python

Uwe Ziegenhagen

Abstract

Even older than Java, Python has achieved a lot
of popularity in recent years. It is an easy-to-learn
general purpose programming language, with strong
capabilities, including in state-of-the-art topics such
as machine learning and artificial intelligence. In
this article we want to present scenarios where LATEX
and Python can work jointly. We will show examples
where LATEX documents are automatically generated
by Python or receive content from Python scripts.

1 Introducing Python

Python has steadily grown to be one of the most
widely used programming languages. Invented in
1991 by Guido van Rossum at the Centrum Wiskunde
& Informatica in the Netherlands, Version 1.0 ap-
peared in 1994. The current versions are 2.7 and 3.x.
For people who wish to start with Python, Python 3
is strongly recommended.

print('Hello' + ' ' + 'World')

Listing 1: The unavoidable “Hello World” example

Python has a strong emphasis on code readabil-
ity by making whitespace significant. In contrast to
other programming languages, Python uses white-
space and indentation to define code blocks; a first
example is in Listing 2.

def addTwo(a, b):

return a+b

print(addTwo(5,3)) # gives 8

print(addTwo('U','S')) # gives 'US'

Listing 2: Basic function definition example

Python supports various programming para-
digms, such as procedural, object-oriented and func-
tional programming. Listing 3 shows an example
for the functional programming paradigm, using a
lambda function to filter those integers from a list
that are divisible by 2.

my_list = [1, 2, 3, 4, 5, 6, 7, 8]

result = filter(lambda x: x % 2 == 0, my_list)

print(list(result))

Listing 3: Using functional programming to filter a
list

Listing 4 shows an example for the OO-programming
paradigm. Here we define a class with two properties
that is then instantiated.

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

def print_age(self):

print(self.name + ', ' + str(self.age))

john = Person('John', 50)

john.print_age()

Listing 4: Using object-oriented programming

Excellent literature is available for Python learn-
ers on- and offline; we can recommend [1].

2 Writing LATEX files with Python

After that brief introduction we will now focus on
the creation of LATEX files using Python. The rec-
ommended approach is to use a so-called “context
managers”, as it will handle the management of the
file references as well as errors in case the file is not
accessible or writable.

Listing 5 shows an example on how to write a
simple LATEX file. Backslashes need to be escaped,
the line endings need to be added. Depending on the
platform the code is executed, they will be replaced
by the system’s line ending. The resulting file is then
UTF-8-encoded and can easily be processed further.

with open('sometexfile.tex','w') as file:

file.write('\\documentclass{article}\n')
file.write('\\begin{document}\n')
file.write('Hello Palo Alto!\n')
file.write('\\end{document}\n')

Listing 5: Writing a TEX file

Processing, e. g., the compilation by pdfLATEX and
display by the system’s PDF viewer can also be trig-
gered from Python, as Listing 5 shows. We create
the LATEX file and use Python’s subprocess module
to call pdfLATEX. When this process has a non-error
exit code, the platform’s PDF viewer is launched.

import subprocess, os

with open('sometexfile.tex','w') as file:

file.write('\\documentclass{article}\n')
file.write('\\begin{document}\n')
file.write('Hello Palo Alto!\n')
file.write('\\end{document}\n')

x = subprocess.call('pdflatex sometexfile.tex')
if x != 0:

print('Exit-code not 0, check result!')
else:

os.system('start sometexfile.pdf')

Listing 6: Writing & processing TEX files

Uwe Ziegenhagen

TUGboat, Volume 40 (2019), No. 2 127

When LATEX files are created programmatically the
goal is often to create bulk letters or other dynami-
cally adjusted documents. Python offers various ways
to assist in this process. The most intuitive way is
probably to use search & replace to eplace placehold-
ers with text; Listing 7 shows an example for this
approach. The example should be self-explaining,
note the nested context managers to read and then
write the LATEX file.

place = 'Palo Alto'

with open('place.tex','r') as myfile:

text = myfile.read()

text_new = text.replace('$MyPlace$', place)

with open('place_new.tex', 'w') as output:

output.write(text_new)

Listing 7: Replacing text

While this approach works fine, it is not recom-
mended when more complicated documents need
to be created. Fortunately Python offers a variety
of template engines — either built-in or easily instal-
lable with the help of Python’s package manager —
that improve the workflow and avoid “re-inventing
the wheel”. Among the different template engines,
we have successfully worked with Jinja2. It offers
full Unicode support, sandboxed execution, template
inheritance and many more useful features. Listing 8
shows a non-LATEX example for Jinja2, which tells
us the following:

1. Syntax is (easily) understandable

2. Jinja2 brings its own notation for looping, etc.

3. Extensive use of {, %, }

from jinja2 import Template

mytemplate = Template("Hello {{place}}!")

print(mytemplate.render(place="Palo Alto"))

mytemplate = Template("Some numbers: {% for n

in range(1,10) %}{{n}}{% endfor %}")

print(mytemplate.render())

Listing 8: A non-LATEX Jinja2 template example

So, to make Jinja2 work well with LATEX we need
to modify the way a template is defined. Listing 2
shows1 how this reconfiguration can be made. In-
stead of braces, we use two LATEX commands, \BLOCK
and \VAR. Both commands will later be defined as
empty LATEX commands in the LATEX file to have the
file compile without errors.

1 Source: https://web.archive.org/web/

20121024021221/http://e6h.de/post/11/

import os

import jinja2 as j

latex_env = j.Environment(

block_start_string = '\BLOCK{',
block_end_string = '}',
variable_start_string = '\VAR{',
variable_end_string = '}',
comment_start_string = '\#{',
comment_end_string = '}',
line_statement_prefix = '%-',
line_comment_prefix = '%#',
trim_blocks = True,

autoescape = False,

loader = j.FileSystemLoader(os.path.abspath('.'))
)

The following Listing 9 shows an excerpt from the
final code. It loads the template, fills the placehold-
ers and writes the final document to the disk. One
advantage of this approach is that it allows the tem-
plate to be separated from the program logic that fills
it; in more complex situations, the built-in scripting
comes very handy.

template = latex_env.get_template('jinja-01.tex')
document = template.render(place='Palo Alto')
with open('final-02.tex','w') as output:

output.write(document)

Listing 9: Rendering the document

3 Running Python from LATEX

In this section we want to address the reverse: not the
creation of LATEX code but the execution of Python
code from within LATEX. Several packages and tools
are available to support this. Here we want to demon-
strate two of them. One is derived from code posted
to tex.stackexchange.com, the other, pythontex, is
a well-maintained LATEX package.

The idea for the code given below came from
the fact, that LATEX is a) able to write the content
of environments to external files and b) is able to
run external commands when --shell-escape is
enabled. One just needs need to combine both to
write and run external files. Based on our question on
TSX, an easily implementable solution was given;2

it is shown in Listing 10. When Python code is
placed in a pycode environment inside a document,
LATEX writes the code to the filename specified in
the parameter of the environment, runs Python on
this file and pipes its output to a .plog file. This
.plog file is then read by LATEX and typeset with
syntax highlighting provided by the minted package
(which also uses Python internally).

The advantage of this approach is that it can
be adjusted easily to different external programs, as

2 https://tex.stackexchange.com/questions/116583

Combining LATEX with Python

https://web.archive.org/web/20121024021221/http://e6h.de/post/11/
https://web.archive.org/web/20121024021221/http://e6h.de/post/11/
https://tex.stackexchange.com/questions/116583

128 TUGboat, Volume 40 (2019), No. 2

long as they are able to run in batch mode. One can
easily adjust the way the code is included, e.g., we
have worked successfully with a two-column setup
in Beamer, where the left column shows the source
code and the right column the result of the code
execution. One disadvantage is that the programs
are executed each time the LATEX code is compiled.

\usepackage{minted}

\setminted[python]{frame=lines, framesep=2mm,

baselinestretch=1.2, bgcolor=colBack,

fontsize=\footnotesize, linenos}

\setminted[text]{frame=lines, framesep=2mm,

baselinestretch=1.2, bgcolor=colBack,

fontsize=\footnotesize, linenos}

\usepackage{fancyvrb}

\makeatletter

\newenvironment{pycode}[1]%

{\xdef\d@tn@me{#1}%

\xdef\r@ncmd{python #1.py > #1.plog}%

\typeout{Writing file #1}%

\VerbatimOut{#1.py}%

}%

{\endVerbatimOut %

\toks0{\immediate\write18}%

\expandafter\toks\expandafter1%

\expandafter{\r@ncmd}%

\edef\d@r@ncmd{\the\toks0{\the\toks1}}%

\d@r@ncmd

\noindent Input

\inputminted{python}{\d@tn@me.py}%

\noindent Output

\inputminted{text}{\d@tn@me.plog}%

}%

\makeatother

Listing 10: The pycode environment

The pythontex package [2] uses a more advanced
approach: it can detect if the Python code has been
edited or not. Only if an edit took place is the
Python code rerun, thus saving time especially with
more complicated Python code. The workflow is the
following: first the LATEX engine of your choice is
run, followed by the pythontex executable, followed
by another latex run. The package offers various
LATEX commands and corresponding environments;
see the package documentation.

Let us show with an example (Listing 11) how
the package can be applied. After loading the pack-
age pythontex we use the \pyc command, which
only executes code and does not typeset it, for the
first line of Python code. Here we instruct Python
to load a function from the yahoo_fin library which
allows us to retrieve stock information from Yahoo,
given that an Internet connection is available.

In the following table we then use \py com-
mands to specify which stock quote to be retrieved.
This command requires the executed Python code
to return a single expression.

\documentclass[12pt]{article}

\usepackage[utf8]{inputenc}

\usepackage[T1]{fontenc}

\usepackage{pythontex}

\usepackage{booktabs}

\begin{document}

\pyc{from yahoo_fin import stock_info as si}

\begin{tabular}{lr}

\toprule

Company & Latest quote \\

\midrule

Apple & \py{round(si.get_live_price("aapl"),2)} \\

Amazon & \py{round(si.get_live_price("amzn"),2)} \\

Facebook & \py{round(si.get_live_price("fb"),2)} \\

\bottomrule

\end{tabular}

\end{document}

Listing 11: Using pythontex to retrieve stock prices

Company Latest quote

Apple 203.43
Amazon 1832.89
Facebook 190.16

1

Figure 1: Output resulting from Listing 11

The pythontex package provides many more fea-
tures, among them even symbolic computation. It
can thus be highly recommended.

4 Summary

We have shown how easy LATEX documents can be
enriched by Python, a scripting language that is easy
to learn and fun to work with. Accompanying this
article is the more extensive presentation held at
TUG 2019, for which the interested reader is directed
to the slides at www.uweziegenhagen.de.

References

[1] M. Lutz. Learning Python. O’Reilly, 2013.

[2] G. M. Poore. PythonTEX: Reproducible
documents with LATEX, Python, and
more. Comput. Sci. Disc. 8(1), 2015.
ctan.org/pkg/pythontex

� Uwe Ziegenhagen
Escher Str. 221
50739 Cologne, Germany
ziegenhagen (at) gmail dot com

www.uweziegenhagen.de

Uwe Ziegenhagen

www.uweziegenhagen.de
ctan.org/pkg/pythontex

	Introducing Python
	Writing LaTeX files with Python
	Running Python from LaTeX
	Summary

